• Stars
    star
    137
  • Rank 266,121 (Top 6 %)
  • Language
    TypeScript
  • License
    MIT License
  • Created over 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

A multi-stage neural search engine for the COVID-19 Open Research Dataset

Covidex: A Search Engine for the COVID-19 Open Research Dataset

Build Status License: MIT

This repository contains the API server, neural models, and UI client for Covidex, a neural search engine for the COVID-19 Open Research Dataset (CORD-19). For a description of our system, check out this paper: Covidex: Neural Ranking Models and Keyword Search Infrastructure for the COVID-19 Open Research Dataset.

We also provide neural search infrastructure for searching domain-specific scholarly literature via Cydex. This paper details the abstractions developed on top of Covidex to facilitate domain-specific search: Cydex: Neural Search Infrastructure for the Scholarly Literature.

Environment Setup

API Server

  1. Install CUDA 10.1
  • For Ubuntu, follow these instructions
  • For Debian run sudo apt-get install nvidia-cuda-toolkit
  1. Install Anaconda (currently version 2020.02)
wget https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh
bash Anaconda3-2020.02-Linux-x86_64.sh
  1. Install Java 11 and Maven
sudo apt-get install openjdk-11-jre openjdk-11-jdk maven
  1. Create an Anaconda environment for Python 3.7
conda create -n covidex python=3.7
  1. Activate the Anaconda environment
conda activate covidex
  1. Install Python dependencies from inside api/
cd api
pip install -r api/requirements.txt
  1. Setup index and environment variables

    • Build Anserini indices for your dataset. We provide instructions for setting up Covidex with both CORD-19 and the ACL Anthology. Instructions to add support for new datasets is found under docs/adding-datasets.md

    • Set up environment variables by copying over the defaults from api/.env.sample into a new api/.env file, and modifying as needed. This requires setting the correct index and schema locations, CUDA devices, and enabling/disabling various services (highlighting, related search, neural ranking, etc.). Set DEVELOPMENT=False for production deployments.

UI Client

  1. Install Node.js 14+ and Yarn.

  2. Install dependencies from inside /client

yarn install

Local Deployment

Serve the UI from inside /client. The client will be running at localhost:3000.

yarn start

Separately, run the API server from inside /api. The server wil be running at localhost:8000.

uvicorn app.main:app --reload --port=8000

Production deployment

We provide a script under scripts/deploy-prod.sh to start the API server and serve the UI build files. This assumes the environment is set up correctly and api/.env contains DEVELOPMENT=False.

Start the server (deploys to port 8000 by default):

sh scripts/deploy-prod.sh

Optional: set the environment variable PORT to use a different port:

PORT=8080 sh scripts/deploy-prod.sh

Route port 80 to 8000 (or whatever port we deploy to). By default, the deployment script will use 8000.

sudo iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-port 8000

If we're having trouble accessing the service, check that there aren't any conflicting rules:

sudo iptables -t nat -L -n -v

If there are conflicting rules, we should delete them:

sudo iptables -t nat -D PREROUTING -p tcp --dport 80 -j REDIRECT --to-port UNWANTED_PORT

Log files are available under api/logs. New files are created daily based on UTC time. All filenames have the date appended, except for the current one, which will be named search.log or related.log.

Testing

Run all API tests:

TESTING=true pytest api

How do I cite this work?

@inproceedings{zhang2020covidex,
  title = "Covidex: Neural Ranking Models and Keyword Search Infrastructure for the {COVID}-19 Open Research Dataset",
  author = "Zhang, Edwin  and
    Gupta, Nikhil  and
    Tang, Raphael  and
    Han, Xiao  and
    Pradeep, Ronak  and
    Lu, Kuang  and
    Zhang, Yue  and
    Nogueira, Rodrigo  and
    Cho, Kyunghyun  and
    Fang, Hui  and
    Lin, Jimmy",
  booktitle = "Proceedings of the First Workshop on Scholarly Document Processing",
  month = nov,
  year = "2020",
  address = "Online",
  publisher = "Association for Computational Linguistics",
  url = "https://www.aclweb.org/anthology/2020.sdp-1.5",
  doi = "10.18653/v1/2020.sdp-1.5",
  pages = "31--41",
}

More Repositories

1

pyserini

Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.
Python
1,640
star
2

anserini

Anserini is a Lucene toolkit for reproducible information retrieval research
Java
1,025
star
3

daam

Diffusion attentive attribution maps for interpreting Stable Diffusion.
Jupyter Notebook
657
star
4

hedwig

PyTorch deep learning models for document classification
Python
591
star
5

honk

PyTorch implementations of neural network models for keyword spotting
Python
511
star
6

docTTTTTquery

docTTTTTquery document expansion model
Python
351
star
7

pygaggle

a gaggle of deep neural architectures for text ranking and question answering, designed for Pyserini
Jupyter Notebook
339
star
8

rank_llm

Repository for prompt-decoding using LLMs (GPT3.5, GPT4, Vicuna, and Zephyr)
Python
282
star
9

BuboQA

Simple question answering over knowledge graphs (Mohammed et al., NAACL 2018)
Python
281
star
10

howl

Wake word detection modeling toolkit for Firefox Voice, supporting open datasets like Speech Commands and Common Voice.
Python
198
star
11

castor

PyTorch deep learning models for text processing
Python
179
star
12

DeeBERT

DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference
Python
152
star
13

birch

Document ranking via sentence modeling using BERT
Python
143
star
14

duobert

Multi-stage passage ranking: monoBERT + duoBERT
Python
112
star
15

MP-CNN-Torch

Multi-Perspective Convolutional Neural Networks for modeling textual similarity (He et al., EMNLP 2015)
Lua
107
star
16

mr.tydi

Mr. TyDi is a multi-lingual benchmark dataset built on TyDi, covering eleven typologically diverse languages.
Python
70
star
17

anserini-notebooks

Anserini notebooks
Jupyter Notebook
69
star
18

honkling

Web app for keyword spotting using TensorflowJS
JavaScript
69
star
19

afriberta

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages
Python
66
star
20

dhr

Dense hybrid representations for text retrieval
Python
59
star
21

data

Castorini data
Python
59
star
22

NCE-CNN-Torch

Noise-Contrastive Estimation for Question Answering with Convolutional Neural Networks (Rao et al. CIKM 2016)
Lua
54
star
23

chatty-goose

A Python framework for conversational search
Python
40
star
24

transformers-arithmetic

Python
38
star
25

d-bert

Distilling BERT using natural language generation.
Python
35
star
26

hf-spacerini

Plug-and-play Search Interfaces with Pyserini and Hugging Face
Python
32
star
27

ragnarok

Retrieval-Augmented Generation battle!
Python
32
star
28

anserini-tools

Evaluation tools shared across anserini, pyserini, and pygaggle
Python
28
star
29

bertserini

BERTserini
Python
25
star
30

SimpleDBpediaQA

simple QA over knowledge graphs on DBpedia
Python
25
star
31

onboarding

Onboarding guide to Jimmy Lin's research group at the University of Waterloo
24
star
32

berxit

Python
21
star
33

umbrela

Python
20
star
34

VDPWI-NN-Torch

Very Deep Pairwise Word Interaction Neural Networks for modeling textual similarity (He and Lin, NAACL/HLT 2016)
Lua
19
star
35

perm-sc

Official codebase for permutation self-consistency.
Python
16
star
36

LiT5

Python
15
star
37

TREC-COVID

TREC-COVID results - this is a mirror of data on the TREC website in a more convenient format.
Roff
14
star
38

honk-models

Pre-trained models for Honk
11
star
39

howl-deploy

JavaScript deployment for Howl, the wake word detection modeling toolkit for Firefox Voice
JavaScript
10
star
40

Tweets2013-IA

The Tweets2013 Internet Archive collection
Scala
10
star
41

AfriTeVa-keji

Python
10
star
42

TrecQA-NegEx

Code and dataset for SIGIR 2017 short paper "Automatically Extracting High-Quality Negative Examples for Answer Selection in Question Answering"
Python
10
star
43

meanmax

MeanMax estimators.
Python
9
star
44

cqe

Python
9
star
45

SM-CNN-Torch

Torch implementation of Severyn and Moschitti's SIGIR 2015 CNN model for question answering
Lua
9
star
46

ONNX-demo

Python
8
star
47

anserini-notebooks-afirm2020

Colab notebooks for AFIRM '20
Jupyter Notebook
7
star
48

serverless-bert-reranking

Python
7
star
49

parrot

Keyword spotting using audio from speech synthesis services and YouTube
Python
7
star
50

touche-error-analysis

A reproduction study of the Touché 2020 dataset in the BEIR benchmark
Python
7
star
51

earlyexiting-monobert

Python
7
star
52

afriteva

Text - 2 - Text for African languages
Python
6
star
53

tct_colbert

Python
6
star
54

transformers-selective

Python
5
star
55

serverless-inference

Neural network inference on serverless architecture
Python
5
star
56

norbert

NorBERT: Anserini + dl4marco-bert
Python
4
star
57

anserini-spark

Anserini-Spark integration
Java
3
star
58

rank_llm_data

3
star
59

numbert

Passage Ranking Library using various pretrained LMs
Python
3
star
60

kim-cnn-vis

An in-browser visualization of Kim CNN
JavaScript
3
star
61

replicate-lce

Python
3
star
62

kws-gen-data

Data for KWS generator.
2
star
63

pyserini-data

Python
2
star
64

BuboQA-models

2
star
65

candle

PyTorch utilities for parameter pruning and multiplies reduction
Python
2
star
66

gooselight2

Search frontend for Anserini
Ruby
2
star
67

africlirmatrix

AfriCLIRMatrix is a test collection for cross-lingual information retrieval research in 15 diverse African languages.
2
star
68

biasprobe

Python
2
star
69

sigtestv

SIGnificance TESTing Violations: an end-to-end toolkit for evaluating neural networks.
Python
1
star
70

howl-models

1
star
71

SolrAnserini

Anserini integration with Solr
Python
1
star
72

gooselight

🦆 Anserini + Blacklight 🦆
Ruby
1
star
73

anlessini

Java
1
star
74

honkling-models

JavaScript
1
star
75

BuboQA-data

Hosting dataset for BuboQA
1
star
76

ragnarok_data

1
star