• Stars
    star
    844
  • Rank 53,983 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 1 year ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

"Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement" (ICCV 2023) & (NTIRE 2024 Challenge)

Β 

arXiv zhihu

PWC PWC

PWC PWC

PWC PWC

PWC PWC

PWC PWC

PWC PWC

PWC PWC

Β 

News

  • 2023.11.03 : The test setting of KinD, LLFlow, and recent diffusion models and the corresponding results on LOL are provided. Please note that we do not suggest this test setting because it uses the mean of the ground truth to obtain better results. But, if you want to follow KinD, LLFlow, and recent diffusion-based works for fair comparison, it is your choice to use this test setting. Please refer to the Testing part for details.
  • 2023.11.02 : Retinexformer is added to the Awesome-Transformer-Attention collection. πŸ’«
  • 2023.10.20 : Params and FLOPS evaluating function is provided. Feel free to check and use it.
  • 2023.10.12 : Retinexformer is added to the ICCV-2023-paper collection. πŸš€
  • 2023.10.10 : Retinexformer is added to the low-level-vision-paper-record collection. ⭐
  • 2023.10.06 : Retinexformer is added to the awesome-low-light-image-enhancement collection. πŸŽ‰
  • 2023.09.20 : Some results on ExDark nighttime object detection are released.
  • 2023.09.20 : Code, models, results, and training logs have been released. Feel free to use them. ⭐
  • 2023.07.14 : Our paper has been accepted by ICCV 2023. Code and Models will be released. πŸš€

Results

  • Results on LOL-v1, LOL-v2-real, LOL-v2-synthetic, SID, SMID, SDSD-in, SDSD-out, and MIT Adobe FiveK datasets can be downloaded from Baidu Disk (code: cyh2) or Google Drive

  • Results on LOL-v1, LOL-v2-real, and LOL-v2-synthetic datasets with the same test setting as KinD, LLFlow, and recent diffusion models can be downloaded from Baidu Disk (code: cyh2) or Google Drive.

  • Results on LIME, NPE, MEF, DICM, and VV datasets can be downloaded from Baidu Disk (code: cyh2) or Google Drive

  • Results on ExDark nighttime object detection can be downloaded from Baidu Disk (code: cyh2) or Google Drive. Please use this repo to run experiments on the ExDark dataset

Performance on LOL-v1, LOL-v2-real, LOL-v2-synthetic, SID, SMID, SDSD-in, and SDSD-out:

results1

Performance on LOL with the same test setting as KinD, LLFlow, and diffusion models:
Metric LOL-v1 LOL-v2-real LOL-v2-synthetic
PSNR 27.18 27.71 29.04
SSIM 0.850 0.856 0.939

Please note that we do not suggest this test setting because it uses the mean of the ground truth to obtain better results. But, if you want to follow KinD, LLFlow, and recent diffusion-based works, it is your choice to use this test setting. Please refer to the Testing part for details.

Performance on MIT Adobe FiveK:

results2

Performance on LIME, NPE, MEF, DICM, and VV:

results3

Performance on ExDark Nighttime object detection:

results4

Β 

1. Create Environment

  • Make Conda Environment
conda create -n Retinexformer python=3.7
conda activate Retinexformer
  • Install Dependencies
conda install pytorch=1.11 torchvision cudatoolkit=11.3 -c pytorch
pip install matplotlib scikit-learn scikit-image opencv-python yacs joblib natsort h5py tqdm tensorboard
pip install einops gdown addict future lmdb numpy pyyaml requests scipy yapf lpips
  • Install BasicSR
python setup.py develop --no_cuda_ext

Β 

2. Prepare Dataset

Download the following datasets:

LOL-v1 Baidu Disk (code: cyh2), Google Drive

LOL-v2 Baidu Disk (code: cyh2), Google Drive

SID Baidu Disk (code: gplv), Google Drive

SMID Baidu Disk (code: btux), Google Drive

SDSD-indoor Baidu Disk (code: jo1v), Google Drive

SDSD-outdoor Baidu Disk (code: uibk), Google Drive

MIT-Adobe FiveK Baidu Disk (code:cyh2), Google Drive, Official

Note:

(1) Please use bandizip to jointly unzip the .zip and .z01 files of SMID, SDSD-indoor, and SDSD-outdoor

(2) Please process the raw images of the MIT Adobe FiveK dataset following the sRGB output mode or directly download and use the sRGB image pairs processed by us in the Baidu Disk (code:cyh2) and Google Drive

(3) Please download the text_list.txt from Google Drive or Baidu Disk (code: ggbh) and then put it into the folder data/SMID/SMID_Long_np/

Then organize these datasets as follows:
    |--data   
    |    |--LOLv1
    |    |    |--Train
    |    |    |    |--input
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--100.png
    |    |    |    |    |--101.png
    |    |    |    |     ...
    |    |    |--Test
    |    |    |    |--input
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--111.png
    |    |    |    |    |--146.png
    |    |    |    |     ...
    |    |--LOLv2
    |    |    |--Real_captured
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00001.png
    |    |    |    |    |    |--00002.png
    |    |    |    |    |     ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |    |    |--Normal
    |    |    |    |    |    |--00690.png
    |    |    |    |    |    |--00691.png
    |    |    |    |    |     ...
    |    |    |--Synthetic
    |    |    |    |--Train
    |    |    |    |    |--Low
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r000da54ft.png
    |    |    |    |    |   |--r02e1abe2t.png
    |    |    |    |    |    ...
    |    |    |    |--Test
    |    |    |    |    |--Low
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |    |    |    |--Normal
    |    |    |    |    |   |--r00816405t.png
    |    |    |    |    |   |--r02189767t.png
    |    |    |    |    |    ...
    |    |--SDSD
    |    |    |--indoor_static_np
    |    |    |    |--input
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--pair1
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--pair2
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |--outdoor_static_np
    |    |    |    |--input
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |    |    |--GT
    |    |    |    |    |--MVI_0898
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |    |--MVI_0918
    |    |    |    |    |   |--0001.npy
    |    |    |    |    |   |--0002.npy
    |    |    |    |    |    ...
    |    |    |    |     ...
    |    |--SID
    |    |    |--short_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--long_sid2
    |    |    |    |--00001
    |    |    |    |    |--00001_00_0.04s.npy
    |    |    |    |    |--00001_00_0.1s.npy
    |    |    |    |    |--00001_01_0.04s.npy
    |    |    |    |    |--00001_01_0.1s.npy
    |    |    |    |     ...
    |    |    |    |--00002
    |    |    |    |    |--00002_00_0.04s.npy
    |    |    |    |    |--00002_00_0.1s.npy
    |    |    |    |    |--00002_01_0.04s.npy
    |    |    |    |    |--00002_01_0.1s.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--SMID
    |    |    |--SMID_LQ_np
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |    |--SMID_Long_np
    |    |    |    |--text_list.txt
    |    |    |    |--0001
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |    |--0002
    |    |    |    |    |--0001.npy
    |    |    |    |    |--0002.npy
    |    |    |    |     ...
    |    |    |     ...
    |    |--FiveK
    |    |    |--train
    |    |    |    |--input
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a0099-kme_264.jpg
    |    |    |    |    |--a0101-kme_610.jpg
    |    |    |    |     ...
    |    |    |--test
    |    |    |    |--input
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...
    |    |    |    |--target
    |    |    |    |    |--a4574-DSC_0038.jpg
    |    |    |    |    |--a4576-DSC_0217.jpg
    |    |    |    |     ...

We also provide download links for LIME, NPE, MEF, DICM, and VV datasets that have no ground truth:

Baidu Disk (code: cyh2) or Google Drive

Β 

3. Testing

Download our models from Baidu Disk (code: cyh2) or Google Drive. Put them in folder pretrained_weights

# LOL-v1
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v1.yml --weights pretrained_weights/LOL_v1.pth --dataset LOL_v1

# LOL-v2-real
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_real.yml --weights pretrained_weights/LOL_v2_real.pth --dataset LOL_v2_real

# LOL-v2-synthetic
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml --weights pretrained_weights/LOL_v2_synthetic.pth --dataset LOL_v2_synthetic

# SID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SID.yml --weights pretrained_weights/SID.pth --dataset SID

# SMID
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SMID.yml --weights pretrained_weights/SMID.pth --dataset SMID

# SDSD-indoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_indoor.yml --weights pretrained_weights/SDSD_indoor.pth --dataset SDSD_indoor

# SDSD-outdoor
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_SDSD_outdoor.yml --weights pretrained_weights/SDSD_outdoor.pth --dataset SDSD_outdoor

# FiveK
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_FiveK.yml --weights pretrained_weights/FiveK.pth --dataset FiveK
  • The same test setting as LLFlow, KinD, and recent diffusion models

We provide the same test setting as LLFlow, KinD, and recent diffusion models. Please note that we do not suggest this test setting because it uses the mean of ground truth to enhance the output of the model. But if you want to follow this test setting, just add a --GT_mean action at the end of the above test command as

# LOL-v1
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v1.yml --weights pretrained_weights/LOL_v1.pth --dataset LOL_v1 --GT_mean

# LOL-v2-real
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_real.yml --weights pretrained_weights/LOL_v2_real.pth --dataset LOL_v2_real --GT_mean

# LOL-v2-synthetic
python3 Enhancement/test_from_dataset.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml --weights pretrained_weights/LOL_v2_synthetic.pth --dataset LOL_v2_synthetic --GT_mean
  • Evaluating the Params and FLOPS of models

We have provided a function my_summary() in Enhancement/utils.py, please use this function to evaluate the parameters and computational complexity of the models, especially the Transformers as

from utils import my_summary
my_summary(RetinexFormer(), 256, 256, 3, 1)

Β 

4. Training

Feel free to check our training logs from Baidu Disk (code: cyh2) or Google Drive

# LOL-v1
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v1.yml

# LOL-v2-real
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v2_real.yml

# LOL-v2-synthetic
python3 basicsr/train.py --opt Options/RetinexFormer_LOL_v2_synthetic.yml

# SID
python3 basicsr/train.py --opt Options/RetinexFormer_SID.yml

# SMID
python3 basicsr/train.py --opt Options/RetinexFormer_SMID.yml

# SDSD-indoor
python3 basicsr/train.py --opt Options/RetinexFormer_SDSD_indoor.yml

# SDSD-outdoor
python3 basicsr/train.py --opt Options/RetinexFormer_SDSD_outdoor.yml

# FiveK
python3 basicsr/train.py --opt Options/RetinexFormer_FiveK.yml

Β 

5. Citation

@InProceedings{Cai_2023_ICCV,
    author    = {Cai, Yuanhao and Bian, Hao and Lin, Jing and Wang, Haoqian and Timofte, Radu and Zhang, Yulun},
    title     = {Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2023},
    pages     = {12504-12513}
}

@inproceedings{retinexformer,
  title={Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement},
  author={Yuanhao Cai and Hao Bian and Jing Lin and Haoqian Wang and Radu Timofte and Yulun Zhang},
  booktitle={ICCV},
  year={2023}
}

Acknowledgment: Our code is based on the BasicSR toolbox.