Dynamically Allocated Neural Network (DANA) Accelerator
A Chisel3 implementation of a fully connected neural network accelerator, DANA, supporting inference or learning. DANA follows a transactional model of computation supporting simultaneous multithreading of transactions [1]. DANA integrates with the RISC-V Rocket microprocessor as a Rocket Custom Coprocessor (RoCC).
This is currently compatibile with rocket-chip:f3299ae9 -- an older rocket-chip version used by fpga-zynq.
tl;dr: Setup
This is compatible with ucb-bar/fpga-zynq:f03982e. Clone this repo, add DANA, and build:
# Clone fpga-zynq
git clone https://github.com/ucb-bar/fpga-zynq $fpga_zynq_dir
cd $fpga_zynq_dir
git reset --hard f03982e
git submodule update --init rocket-chip testchipip
# Add DANA to rocket-chip
cd $fpga_zynq_dir/rocket-chip
git submodule update --init
git clone https://github.com/bu-icsg/dana
cd $fpga_zynq_dir/rocket-chip/dana
git submodule update --init
# Build an emulator
cd $fpga_zynq_dir/rocket-chip/emulator
make ROCKETCHIP_ADDONS=dana CONFIG=DanaEmulatorConfig
# Build example DANA networks in 'dana/build/nets'
cd $fpga_zynq_dir/rocket-chip/dana
make
# Build bare metal tests for DANA in 'dana/tests/build'
cd $fpga_zynq_dir/rocket-chip/riscv-tools
git submodule update --init --recursive riscv-tests
cd $fpga_zynq_dir/rocket-chip/dana/tests
autoconf
mkdir build
cd build
../configure
make
# Run tests on the emulator with or without printfs
cd $fpga_zynq_dir/rocket-chip/emulator
./emulator-rocketchip-DanaEmulatorConfig \
../dana/tests/build/nets/xfiles-dana-nets-p-xorSigmoidSymmetric
./emulator-rocketchip-DanaEmulatorConfig \
+verbose \
../dana/tests/build/nets/xfiles-dana-nets-p-xorSigmoidSymmetric \
2>&1 | \
spike-dasm | \
tee xfiles-dana-nets-p-xorSigmoidSymmetric.log
To build Verilog suitable for Zynq FPGAs (Zedboard, ZC706):
# Add a Zedboard configuration to fpga-zynq
echo "class DanaZedboardConfig extends Config (
new rocketchip.HasDanaRocc ++
new xfiles.DefaultXFilesConfig ++
new dana.DanaConfig(
numPes = 2,
cache = 1,
cacheSize = 512 * 1024,
scratchpad = 16 * 1024) ++
new dana.DefaultDanaConfig ++
new ZynqConfig)" >> $fpga_zynq_dir/common/src/main/scala/Configs.scala
# Build for the FPGA (Zedboard)
cd $fpga_zynq_dir/zedboard
make rocket ROCKETCHIP_ADDONS=dana CONFIG=DanaZedboardConfig
make project ROCKETCHIP_ADDONS=dana CONFIG=DanaZedboardConfig
make fpga-images-zedboard/boot.bin CONFIG=DanaZedboardConfig
Table of Contents
- Setup
- Software Emulation
- Hardware Evaluation
- Known Issues, WIP Features
- Additional Documentation
- Contributors and Acknowledgments
Setup
Requirements:
python 3.X
numpy
scipy
- All dependencies needed for the RISC-V toolchain
This is not, at present, a standalone repository and must be cloned inside of an existing Rocket Chip clone. The following will grab a supported version of rocket-chip and clone DANA inside of it:
git clone https://github.com/ucb-bar/rocket-chip $ROCKETCHIP_DIR
cd $ROCKETCHIP_DIR
git reset --hard f3299ae91d3f01d0349eb4746886e303e8fb1b41
git submodule update --init --recursive
git clone https://github.com/bu-icsg/dana
cd dana
git submodule update --init
This requires a supported version of the RISC-V toolchain. Go ahead and build the version of the toolchain pointed at by the rocket-chip repository. This requires setting the RISCV
environment variable and satisfying any dependencies required to build the toolchain.
cd $ROCKETCHIP_DIR/riscv-tools
./build.sh
Emulation (Functional Verification)
This project uses Chisel3 and FIRRTL for hardware design and Verilog generation.
Rocket Chip Emulation
You can build a complete version of Rocket Chip that includes DANA in a RoCC socket.
You can build an emulator of Rocket + DANA using the rocket-chip make target inside the rocket-chip/emulator directory. The Makefile just needs to know what configuration we're using and that we have additional Chisel code located in the dana
directory:
cd $ROCKETCHIP/emulator
make CONFIG=DanaEmulatorConfig ROCKETCHIP_ADDONS=dana
We provide bare-metal test programs inside the tests directory.
Emulation Debugging
For debugging or running the emulator more verbosely, you have the option of either relying on Chisel's printf
or building a version of the emulator that supports full VCD dumping.
Printf Debugging
Chisel's printf
writes to STDERR, all printf
statements are disabled by default. You can enable all Chisel-included printf
commands with the +verbose
option:
cd $ROCKETCHIP/emulator
./emulator-Top-DanaEmulatorConfig +verbose [binary] 2>&1 | tee run.log
Note: Rocket Chip dumps information every cycle and it is often useful to grep for the exact printf
that you're looking for.
Waveform Debugging
You can build a "debug" version of the emulator (which provides full support for generating vcd traces with:
cd $ROCKETCHIP/emulator
make debug
This creates a *-debug
emulator which supports a -v[FILE]
option for generating a VCD file, a +start
option for starting VCD dumping at a specific cycle.
To further reduce the size of the VCD file we provide a tool that prunes a VCD file to only include signals in a specific module and it's children, vcd-prune
. Example usage to only emit DANA signals:
cd $ROCKETCHIP_DIR/emulator
./emulator-Top-DanaEmulatorConfig-debug -v- [binary] 2>&1 | ../dana/util/hdl-tools/scripts/vcd-prune -m Dana > run.vcd
This waveform can then be viewed using GTKWave by building GTKWave locally and using a helper script to pre-populate the waveform window:
cd $ROCKETCHIP/emulator
make -C ../dana/util/hdl-tools gtkwave
../dana/util/hdl-tools/scripts/gtkwave-helper run.vcd
Hardware Evaluation
Rocket + DANA can be evaluated on a Zynq FPGA using the Berkeley-provided fpga-zynq
repository.
Known Issues and WIP Features
There are a few remaining things that we're working on closing out which limit the set of available features.
Configuration Size
Currently, the neural network configuration must fit completely in one of DANA's configuration cache memories. DANA's neural network configuration format using 32-bit internal pointers meaning that networks up to 4GiB are theoretically supported. We've used networks up to 512KiB in size on FPGA without issue.
Linux Support
We're working on a full integration of the X-FILES supervisor library with the Linux kernel. Supervisor features are currently supported via system calls added to the RISC-V Proxy Kernel via an included patch.
IO Queues
While neural network configurations are loaded from the memory of the microprocessor, all input and output data is transferred from Rocket to DANA hardware through the Rocket Custom Coprocessor (RoCC) register interface. We have plans to enable asynchronous transfer through in-memory queues.
Additional Documentation
Additional documentation can be found in the doc
directory or in some of our publications.
Attribution
If you use this for research, please cite the original PACT paper:
@inproceedings{eldridge2015,
author = {Schuyler Eldridge and
Amos Waterland and
Margo Seltzer and
Jonathan Appavoo and
Ajay Joshi},
title = {Towards General-Purpose Neural Network Computing},
booktitle = {2015 International Conference on Parallel Architecture and Compilation,
{PACT} 2015, San Francisco, CA, USA, October 18-21, 2015},
pages = {99--112},
year = {2015},
url = {http://dx.doi.org/10.1109/PACT.2015.21},
doi = {10.1109/PACT.2015.21},
timestamp = {Wed, 04 May 2016 14:25:23 +0200},
biburl = {http://dblp.uni-trier.de/rec/bib/conf/IEEEpact/EldridgeWSAJ15},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
Doc Directory
Specific documentation includes:
Publications
[1] S. Eldridge, A. Waterland, M. Seltzer, J. Appavoo, and A. Joshi, "Towards General Purpose Neural Network Computing", in Proceedings of the International Conference on Parallel Architectures and Compilation Techniques (PACT). 2015.
[2] S. Eldridge, "Neural Network Computing Using On-Chip Accelerators", Boston University. 2016.
Workshop Presentations and Posters
[3] S. Eldridge., T. Unger, M. Sahaya Louis, A. Waterland, M. Seltzer, J. Appavoo, and A. Joshi, "Neural Networks as Function Primitives: Software/Hardware Support with X-FILES/DANA", Boston Area Architecture Workshop (BARC). 2016.
Contributors and Acknowledgments
The following people, while not mentioned in the commit log, have contributed directly or indirectly to the development of this work:
This work was funded by a NASA Space Technology Research Fellowship.