• Stars
    star
    1,543
  • Rank 30,320 (Top 0.6 %)
  • Language
    Python
  • License
    Other
  • Created almost 7 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose

Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018

Project Page Teaser Image

Requirements

  • Python 2.7
  • TensorFlow tested on version 1.3, demo alone runs with TF 1.12

Installation

Linux Setup with virtualenv

virtualenv venv_hmr
source venv_hmr/bin/activate
pip install -U pip
deactivate
source venv_hmr/bin/activate
pip install -r requirements.txt

Install TensorFlow

With GPU:

pip install tensorflow-gpu==1.3.0

Without GPU:

pip install tensorflow==1.3.0

Windows Setup with python 3 and Anaconda

This is only partialy tested.

conda env create -f hmr.yml

if you need to get chumpy

https://github.com/mattloper/chumpy/tree/db6eaf8c93eb5ae571eb054575fb6ecec62fd86d

Demo

  1. Download the pre-trained models
wget https://people.eecs.berkeley.edu/~kanazawa/cachedir/hmr/models.tar.gz && tar -xf models.tar.gz
  1. Run the demo
python -m demo --img_path data/coco1.png
python -m demo --img_path data/im1954.jpg

Images should be tightly cropped, where the height of the person is roughly 150px. On images that are not tightly cropped, you can run openpose and supply its output json (run it with --write_json option). When json_path is specified, the demo will compute the right scale and bbox center to run HMR:

python -m demo --img_path data/random.jpg --json_path data/random_keypoints.json

(The demo only runs on the most confident bounding box, see src/util/openpose.py:get_bbox)

Webcam Demo (thanks @JulesDoe!)

  1. Download pre-trained models like above.
  2. Run webcam Demo
  3. Run the demo
python -m demo --img_path data/coco1.png
python -m demo --img_path data/im1954.jpg

Training code/data

Please see the doc/train.md!

Citation

If you use this code for your research, please consider citing:

@inProceedings{kanazawaHMR18,
  title={End-to-end Recovery of Human Shape and Pose},
  author = {Angjoo Kanazawa
  and Michael J. Black
  and David W. Jacobs
  and Jitendra Malik},
  booktitle={Computer Vision and Pattern Recognition (CVPR)},
  year={2018}
}

Opensource contributions

russoale has created a Python 3 version with TF 2.0: https://github.com/russoale/hmr2.0

Dawars has created a docker image for this project: https://hub.docker.com/r/dawars/hmr/

MandyMo has implemented a pytorch version of the repo: https://github.com/MandyMo/pytorch_HMR.git

Dene33 has made a .ipynb for Google Colab that takes video as input and returns .bvh animation! https://github.com/Dene33/video_to_bvh

bvh bvh2

layumi has added a 2D-to-3D color mapping function to the final obj: https://github.com/layumi/hmr

I have not tested them, but the contributions are super cool! Thank you!! Let me know if you have any mods that you would like to be added here!

More Repositories

1

human_dynamics

Project for paper "Learning 3D Human Dynamics from Video"
Python
631
star
2

cmr

Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections
Python
475
star
3

motion_reconstruction

Motion Reconstruction Code and Data for Skills from Videos (SFV)
Python
312
star
4

vgan

Code for image generation of Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining Information Flow
Python
141
star
5

catdeform

A Matlab implementation for the paper: "Learning 3D Deformation of Animals from 2D Images" http://www.umiacs.umd.edu/~kanazawa/papers/cat_eg2016.pdf
MATLAB
46
star
6

Semantic-texton-forests

Implementation of semantic texton forests in matlab
MATLAB
23
star
7

MRF

simple implementation of MRF foreground/background segmentation for CMSC828 Spring '12
C++
21
star
8

Structure-from-Motion

Affine structure from motion in image sequences adapted from Derek Hoiem's CS 543/ECE 549 course at the University of Illinois at Urbana-Champaign
MATLAB
18
star
9

si-convnet

Implementation of the [Locally Scale-Invariant Convolutional Neural Network](http://www.umiacs.umd.edu/~kanazawa/papers/sicnn_workshop2014.pdf)
C++
17
star
10

Intrinsic-Image

experiments with intrinsic image decomposition
C++
16
star
11

Topic-Random-Field

Implementation of "Image Segementation with Topic Random Field" by Zhao, Fei-fei, and Xing.
MATLAB
8
star
12

Explicit_Shape_Regression

Implementation of the paper for face alignment by MSRA research.microsoft.com/en-us/.../cvpr12_facealignment.pdf
MATLAB
7
star
13

Basic-Classification

ML Fall '10 project 1
Python
4
star
14

Class-Notes

All of my class notes!
Emacs Lisp
4
star
15

Nonlinear-Diffusion

bare minimum illustration of 3 nonlinear image denoising methods
MATLAB
3
star
16

Complex-Classification

ML Fall '11 project 2
Python
2
star
17

Collective-Classification

C++
2
star
18

Instagram-Scraper

Scrape images from instagram
Ruby
2
star
19

Formal-Reasoning-in-Computer-Science

University of Maryland open study group on mathematical proofs, theoretical arguments, probability theory and randomized algorithms. Focus on solving problems. Content has been chosen to complement graduate-level work in computer science.
Emacs Lisp
2
star
20

Unsupervised-Learning

UMD Fall '11 CMS726 Machine Learning Project 3 with Hall Daume.
Python
1
star