• Stars
    star
    131
  • Rank 275,867 (Top 6 %)
  • Language
    Python
  • Created about 2 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Dict-TTS: Learning to Pronounce with Prior Dictionary Knowledge for Text-to-Speech



Dict-TTS: Learning to Pronounce with Prior Dictionary Knowledge for Text-to-Speech
Ziyue Jiang, Zhe Su, Zhou Zhao, Qian Yang, Yi Ren, Jinglin Liu, Zhenhui Ye
Paper: https://arxiv.org/pdf/2206.02147

Conference: NIPS 2022

arXiv stars visitors

We provide our implementation and pretrained models as open source in this repository.

Visit our demo page for audio samples.

Dependencies

Requirements

# Install Python 3 first. (Anaconda recommended)
export PYTHONPATH=.

# build a virtual env
conda create -n dict_tts python=3.9 
conda activate dict_tts

# install pytorch requirements
# We use RTX 3080 with CUDA 11.3
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

# Newer version of MFA has different output format
conda install montreal-forced-aligner==2.0.0rc3 -c conda-forge

pip install -r requirements.txt
sudo apt install -y sox libsox-fmt-mp3

Install the aligner (MFA 2.0)

# with conda (recommended, and is included in the script above)
conda install montreal-forced-aligner==2.0.0rc3 -c conda-forge

# with pip
bash scripts/install_mfa2.sh

Download the datasets (for example, Biaobei) Download Biaobei from https://www.data-baker.com/open source.html to data/raw/biaobei

Download the pre-trained vocoder

mkdir pretrained
mkdir pretrained/hifigan_hifitts

download model_ckpt_steps_2168000.ckpt, config.yaml, from https://drive.google.com/drive/folders/1n_0tROauyiAYGUDbmoQ__eqyT_G4RvjN?usp=sharing to pretrained/hifigan_hifitts

Download the pre-trained language model download roformer-chinese-base, from https://huggingface.co/junnyu/roformer_chinese_base to pretrained/roformer-chinese-base

Obtain the dictionary You can use the dictionary in ./data/zh-dict.json or crawl the dictionary from the dictionary website mentioned in our paper.

Quick Start

Choose the config file (for example, DictTTS's config)

export CONFIG=egs/datasets/audio/biaobei/dict_tts.yaml 

Preprocess

Pre-align

python data_gen/tts/bin/pre_align.py --config $CONFIG

MFA-align

python data_gen/tts/bin/mfa_train.py --config $CONFIG
python data_gen/tts/bin/mfa_align.py --config $CONFIG

Binarize

CUDA_VISIBLE_DEVICES=0 python data_gen/tts/bin/binarize.py --config $CONFIG

Pre-trained models

You can download the pre-trained models from https://drive.google.com/drive/folders/1oAaXlbGo03RIymwDthKEjOGmi-QcfWhm?usp=sharing, put them to the chechkpoints/dicttts_biaobei_wo_gumbel and follow the inference steps below.

Train, Infer and Eval

Train

CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config $CONFIG --exp_name dicttts_biaobei_wo_gumbel --reset --hparams="ds_workers=4,max_updates=300000,num_valid_plots=10,use_word_input=True,vocoder_ckpt=pretrained/hifigan_hifitts,max_sentences=60,val_check_interval=2000,valid_infer_interval=2000,binary_data_dir=data/binary/biaobei,word_size=8000,use_dict=True"

Infer (GPU)

CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config $CONFIG --exp_name dicttts_biaobei_wo_gumbel --infer --hparams="ds_workers=4,max_updates=300000,num_valid_plots=10,use_word_input=True,vocoder_ckpt=pretrained/hifigan_hifitts,max_sentences=60,val_check_interval=2000,valid_infer_interval=2000,binary_data_dir=data/binary/biaobei,word_size=8000,use_dict=True"

Eval the pronunciation error rate (PER)

# The PER of the current version is about 1.93 %.
python scripts/get_pron_error.py

Overall Repository Structure

  • egs: the config files in the experiments,which is read by utils/hparams.py
  • data_gen: preprocess and binarize the dataset
  • modules: model
  • scripts: some scripts used in the experiments
  • tasks: dataloader, training and inference
  • utils: utils
  • data: data folder
    • raw: raw files
    • processed: preprocessed files
    • binary: binary files
  • checkpoints: checkpoint, tensorboard logs, and inference results。

Todo

  • The pretrained models
  • The Gumbel softmax version

Citation

If you find this useful for your research, please cite the following papers:

  • Dict-TTS
@article{jiang2022dict,
  title={Dict-TTS: Learning to Pronounce with Prior Dictionary Knowledge for Text-to-Speech},
  author={Jiang, Ziyue and Zhe, Su and Zhao, Zhou and Yang, Qian and Ren, Yi and Liu, Jinglin and Ye, Zhenhui},
  journal={arXiv preprint arXiv:2206.02147},
  year={2022}
}

Acknowledgments

Our codes are influenced by the following repos:

License and Agreement

Any organization or individual is prohibited from using any technology mentioned in this paper to generate someone's speech without his/her consent, including but not limited to government leaders, political figures, and celebrities. If you do not comply with this item, you could be in violation of copyright laws.