ABSA
Aspect Based Sentiment Analysis
虽说是基于观点的分析,但也是基于句子层的分析,因为需要按句子进行分析。
概念参考
参数名 | 值 |
---|---|
textPolarity | 整条文本情感极性:正、中、负,text字段输入非法时返回-100 |
textIntensity | 整条文本情感程度(取值范围[-1,1],越大代表越正向,越小代表越负向,接近0代表中性) |
aspectItem | 属性情感列表,每个元素是一个json字段 |
aspectCategory | 属性类别 |
aspectIndex | 属性词所在的起始位置,终结位置 |
aspectTerm | 属性词 |
opinionTerm | 情感词 |
aspectPolarity | 属性片段极性(正、中、负) |
Task Process
- 按句 提取 属性词
- 按句 提取 情感词
- 属性词所在起始位置,终止位置
- 属性词 -> EA分类
- 情感词 -> 极性分类
- 整条文本的感情极性(正、负、中) 及其概率值
Done Tasks
根据现有数据集,实际完成的任务
- 按句进行 EA 分类
- 按句进行情感极性分析
To do
- 观点过滤:文字噪音处理、虚假评论、水军、广告、不含观点、无意义文本
- negation 否定处理
SemEval ABSA
- NLP的 SemEval 论文合辑 [ACL]
- SemEval - 2014 - ABSA [competition] [data]
- SemEval - 2015 - ABSA [competition] [data] [paper]
- SemEval - 2016 - ABSA [competition] [data] [guideline] [paper]
- bonus: CodaLab Competitions [intro]
可参考的GitHub项目
数据集基本都基于 2014-2016 SemEval 比赛
- [data: self data] Unsupervised-Aspect-Extraction
- [data: SemEval-2016] aspect-extraction
- [data: SemEval-2015] AspectBasedSentimentAnalysis 跑了下这个项目,其中结合了语法分析和机器学习,按照语法规则抽取的属性词。代码嵌套逻辑比较强,不建议套用。
- [data: SemEval-2016] Review_aspect_extraction
- [data: SemEval-2014, 2016] DE-CNN
- [data: SemEval-2015] Coupled-Multi-layer-Attentions
- [data: SemEval-2016 laptop] mem_absa
- [data: SemEval-2014] ABSA-PyTorch
- [data: SemEval-2014, 2016] Attention_Based_LSTM_AspectBased_SA
- [data: SemEval-2014] ABSA_Keras 利用了tensorflow hub,适用hub时出现了版本问题未跑通。
- [data: SemEval-2016] ABSA
paper
- Deep Learning for Aspect-Based Sentiment Analysis [paper]
- Fine-grained Opinion Mining with Recurrent Neural Networks and Word Embeddings [paper]
- Encoding Conversation Context for Neural Keyphrase Extraction from Microblog Posts [paper]
- End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF [paper]
- [2012] 用户评论中的标签抽取以及排序 [paper]
数据集
中文
英文
- Amazon product data [data]
- Web data: Amazon reviews [data]
- Amazon Fine Food Reviews [kaggle]
- SemEval ABSA
优化方向
字/词/句 文本嵌入Embedding
中文
ABSA书的目录,可以学习逻辑
ABSA Book Outline
- Introduction
- Aspect-Based Sentiment Analysis (ABSA)
- 2.1. The three tasks of ABSA
- 2.2. Domain and benchmark datasets
- 2.3. Previous approaches to ABSA tasks
- 2.4. Evaluation measures of ABSA tasks
- Deep Learning for ABSA
- 3.1. Multiple layers of DNN
- 3.2. Initialization of input vectors
- 3.2.1. Word embeddings vectors
- 3.2.2. Featuring vectors
- 3.2.3. Part-Of-Speech (POS) and chunk tags
- 3.2.4. Commonsense knowledge
- 3.3. Training process of DNNs
- 3.4. Convolutional Neural Network Model (CNN)
- 3.4.1. Architecture
- 3.4.2. Application in consumer review domain
- 3.5. Recurrent Neural Network Models (RNN)
- 3.5.1. Computation of RNN models
- 3.5.2. Bidirectional RNN
- 3.5.3. Attention mechanism and memory networks
- 3.5.4. Application in the consumer review domain
- 3.5.5. Application in targeted sentiment analysis
- 3.6. Recursive Neural Network Model (RecNN)
- 3.6.1. Architecture
- 3.6.2. Application
- 3.7. Hybrid models
- Comparison of performance on benchmark datasets
- 4.1. Opinion target extraction
- 4.2. Aspect category detection
- 4.3. Sentiment polarity of aspect-based consumer reviews
- 4.4. Sentiment polarity of targeted text
- Challenges
- 5.1. Domain adaptation
- 5.2. Multilingual application
- 5.3. Technical requirements
- 5.4. Linguistic complications
- Conclusion
- Appendix: List of Abbreviations
- References