• Stars
    star
    153
  • Rank 243,368 (Top 5 %)
  • Language
    Python
  • Created over 5 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Aspect Based Sentiment Analysis 基于方面的细粒度情感分析

ABSA

Aspect Based Sentiment Analysis

虽说是基于观点的分析,但也是基于句子层的分析,因为需要按句子进行分析。

概念参考
  • ABSA refer presentation [ppt]
  • 阿里云的商品评价解析 [link]
参数名
textPolarity 整条文本情感极性:正、中、负,text字段输入非法时返回-100
textIntensity 整条文本情感程度(取值范围[-1,1],越大代表越正向,越小代表越负向,接近0代表中性)
aspectItem 属性情感列表,每个元素是一个json字段
aspectCategory 属性类别
aspectIndex 属性词所在的起始位置,终结位置
aspectTerm 属性词
opinionTerm 情感词
aspectPolarity 属性片段极性(正、中、负)
Task Process
  1. 按句 提取 属性词
  2. 按句 提取 情感词
  3. 属性词所在起始位置,终止位置
  4. 属性词 -> EA分类
  5. 情感词 -> 极性分类
  6. 整条文本的感情极性(正、负、中) 及其概率值
Done Tasks

根据现有数据集,实际完成的任务

  • 按句进行 EA 分类
  • 按句进行情感极性分析
To do
  • 观点过滤:文字噪音处理、虚假评论、水军、广告、不含观点、无意义文本
  • negation 否定处理
SemEval ABSA
可参考的GitHub项目

数据集基本都基于 2014-2016 SemEval 比赛

paper
  • Deep Learning for Aspect-Based Sentiment Analysis [paper]
  • Fine-grained Opinion Mining with Recurrent Neural Networks and Word Embeddings [paper]
  • Encoding Conversation Context for Neural Keyphrase Extraction from Microblog Posts [paper]
  • End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF [paper]
  • [2012] 用户评论中的标签抽取以及排序 [paper]
数据集
中文
  • AI-Challenge [data]
  • SemEval ABSA 2016 [data]
英文
  • Amazon product data [data]
  • Web data: Amazon reviews [data]
  • Amazon Fine Food Reviews [kaggle]
  • SemEval ABSA

优化方向

字/词/句 文本嵌入Embedding
中文
  • Chinese Word Vectors [github]
  • nlp_chinese_corpus [github]
  • 泛化语料、专业语料、向量化时,如何整合,还是两者独立向量化

ABSA书的目录,可以学习逻辑

ABSA Book Outline

  1. Introduction
  2. Aspect-Based Sentiment Analysis (ABSA)
    • 2.1. The three tasks of ABSA
    • 2.2. Domain and benchmark datasets
    • 2.3. Previous approaches to ABSA tasks
    • 2.4. Evaluation measures of ABSA tasks
  3. Deep Learning for ABSA
    • 3.1. Multiple layers of DNN
    • 3.2. Initialization of input vectors
      • 3.2.1. Word embeddings vectors
      • 3.2.2. Featuring vectors
      • 3.2.3. Part-Of-Speech (POS) and chunk tags
      • 3.2.4. Commonsense knowledge
    • 3.3. Training process of DNNs
    • 3.4. Convolutional Neural Network Model (CNN)
      • 3.4.1. Architecture
      • 3.4.2. Application in consumer review domain
    • 3.5. Recurrent Neural Network Models (RNN)
      • 3.5.1. Computation of RNN models
      • 3.5.2. Bidirectional RNN
      • 3.5.3. Attention mechanism and memory networks
      • 3.5.4. Application in the consumer review domain
      • 3.5.5. Application in targeted sentiment analysis
    • 3.6. Recursive Neural Network Model (RecNN)
      • 3.6.1. Architecture
      • 3.6.2. Application
    • 3.7. Hybrid models
  4. Comparison of performance on benchmark datasets
    • 4.1. Opinion target extraction
    • 4.2. Aspect category detection
    • 4.3. Sentiment polarity of aspect-based consumer reviews
    • 4.4. Sentiment polarity of targeted text
  5. Challenges
    • 5.1. Domain adaptation
    • 5.2. Multilingual application
    • 5.3. Technical requirements
    • 5.4. Linguistic complications
  6. Conclusion
  7. Appendix: List of Abbreviations
  8. References