sparktraining
Examples for Spark Training in chinahadoop.cn
本地运行Spark方法
- 下载spark安装包
- 解压spark安装包
- 进入spark解压目录下,运行:
$ bin/spark-shell
- 在命令行提示符下拷贝以下代码并查看执行结果
import scala.math.random
val tasks = 10
val n = tasks * 100000
val count = sc.parallelize(1 until n, tasks).map { i =>
val x = random * 2 - 1
val y = random * 2 - 1
if (x*x + y*y <= 1) 1 else 0
}.reduce(_ + _)
println("Pi is roughly " + 4.0 * count / n )
分布式运行Spark方法
搭建hadoop集群
Hadoop YARN/HDFS配置文件参考:conf/hadoop目录
配置Spark客户端,并启动spark history server
- Spark客户端配置文件参考:conf/spark目录
- 启动spark history server: sbin/start-history-server.sh
将spark-shell运行在yarn client或cluster模式
- yarn client模式:bin/spark-shell --master yarn --deploy-mode client
- yarn cluster:bin/spark-shell --master yarn --deploy-mode cluster