Sparse Large Kernel Network - SLaK
Official PyTorch implementation of
(1) More ConvNets in the 2020s: Scaling up Kernels Beyond 51 x 51 using Sparsity, ICLR 2023.
Shiwei Liu, Tianlong Chen, Xiaohan Chen, Xuxi Chen, Qiao Xiao, Boqian Wu, Mykola Pechenizkiy, Decebal Mocanu, Zhangyang Wang
(2) Are Large Kernels Better Teachers than Transformers for ConvNets?, ICML 2023.
Tianjin Huang, Lu Yin, Zhenyu Zhang, Li Shen, Meng Fang, Mykola Pechenizkiy, Zhangyang Wang, Shiwei Liu
We propose SLaK, a pure ConvNet model that for the first time is able to scale the convolutional kernels beyond 51x51.
Table of contents
- Installation
- Results of SLaK
- Results of large-2-small kernel Distillation
- Training of SLaK
- Downstream Transfer Code for Semantic Segmentation and Object Detection
- Training of large-2-small kernel distillation
Results and ImageNet-1K trained models
SLaK with 51x51 kernels trained on ImageNet-1K for 300 epochs
name | resolution | kernel size | acc@1 | #params | FLOPs | model |
---|---|---|---|---|---|---|
ConvNeXt-T | 224x224 | 7x7 | 82.1 | 29M | 4.5G | ConvNeXt |
ConvNeXt-S | 224x224 | 7x7 | 83.1 | 50M | 8.7G | ConvNeXt |
ConvNeXt-B | 224x224 | 7x7 | 83.8 | 89M | 15.4G | ConvNeXt |
SLaK-T | 224x224 | 51x51 | 82.5 | 30M | 5.0G | Google Drive |
SLaK-S | 224x224 | 51x51 | 83.8 | 55M | 9.8G | Google Drive |
SLaK-B | 224x224 | 51x51 | 84.0 | 95M | 17.1G | Google Drive |
SLaK-T with 31x31, 51,51, and 61x61 kernels trained on ImageNet-1K for 120 epochs
name | resolution | kernel size | acc@1 | #params | FLOPs | model |
---|---|---|---|---|---|---|
SLaK-T | 224x224 | 31x31 | 81.5 | 30M | 4.8G | Surf Drive |
SLaK-T | 224x224 | 51x51 | 81.6 | 30M | 5.0G | Surf Drive |
SLaK-T | 224x224 | 61x61 | 81.5 | 31M | 5.2G | Surf Drive |
ConvNeXt distilled from SLaK via large-2-small kernel distillation on ImageNet-1K for 300 epochs
name | resolution | kernel size | acc@1 | #params | FLOPs | model |
---|---|---|---|---|---|---|
ConvNeXt-T | 224x224 | 7x7 | 82.1 | 29M | 4.5G | ConvNeXt |
ConvNeXt-S | 224x224 | 7x7 | 83.1 | 50M | 8.7G | ConvNeXt |
ConvNeXt L2S-T | 224x224 | 7x7 | 83.1 | 29M | 4.5G | Surf Drive |
ConvNeXt L2S-S | 224x224 | 7x7 | 84.3 | 50M | 8.7G | Surf Drive |
Installation
The code is tested used CUDA 11.3.1, cudnn 8.2.0, PyTorch 1.10.0 with A100 GPUs.
Dependency Setup
Create an new conda virtual environment
conda create -n slak python=3.8 -y
conda activate slak
Install Pytorch>=1.10.0. For example:
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
Clone this repo and install required packages:
git clone https://github.com/Shiweiliuiiiiiii/SLaK.git
pip install timm tensorboardX six
To enable training SLaK, we follow RepLKNet and install the efficient large-kernel convolution with PyTorch provided by MegEngine:
cd cutlass/examples/19_large_depthwise_conv2d_torch_extension
./setup.py install --user
. If you get errors, (1) check yourCUDA_HOME
; (2) you might need to change the source code a bit to make tensors contiguous see here for example.- A quick check:
python depthwise_conv2d_implicit_gemm.py
- Add
WHERE_YOU_CLONED_CUTLASS/examples/19_large_depthwise_conv2d_torch_extension
into yourPYTHONPATH
so that you canfrom depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM
anywhere. Then you may useDepthWiseConv2dImplicitGEMM
as a replacement ofnn.Conv2d
. export LARGE_KERNEL_CONV_IMPL=WHERE_YOU_CLONED_CUTLASS/examples/19_large_depthwise_conv2d_torch_extension
so that RepLKNet will use the efficient implementation. Or you may simply modify the related code (get_conv2d
) inSLaK.py
.
Training code
We provide ImageNet-1K training, and ImageNet-1K fine-tuning commands here.
ImageNet-1K SLaK-T on a single machine
python -m torch.distributed.launch --nproc_per_node=4 main.py \
--Decom True --sparse --width_factor 1.3 -u 2000 --sparsity 0.4 --sparse_init snip --prune_rate 0.5 --growth random \
--epochs 300 --model SLaK_tiny --drop_path 0.1 --batch_size 128 \
--lr 4e-3 --update_freq 8 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k --num_workers 40 \
--kernel_size 51 49 47 13 5 --output_dir /path/to/save_results
- To enable to train/evaluate SLaK models, make sure that you add
--sparse --Decom True --kernel_size 51 49 47 13 5 --sparse_init snip
in your script.--sparse
: enable sparse model;--sparsity
: model sparsity;--width_factor
: model width;-u
: adaptation frequency;--prune_rate
: adaptation rate,--kernel_size
: [4 * (kernel size of each stage) + the size of the smaller kernel edge]. - You can add
--use_amp true
to train in PyTorch's Automatic Mixed Precision (AMP). - Use
--resume /path_or_url/to/checkpoint.pth
to resume training from a previous checkpoint; use--auto_resume true
to auto-resume from latest checkpoint in the specified output folder. To resume the training of sparse models, we need to set--sparse_init resume
to get the masks. --batch_size
: batch size per GPU;--update_freq
: gradient accumulation steps.- The effective batch size =
--nodes
*--ngpus
*--batch_size
*--update_freq
. In the example above, the effective batch size is4*8*128*1 = 4096
. You can adjust these four arguments together to keep the effective batch size at 4096 and avoid OOM issues, based on the model size, number of nodes and GPU memory.
ImageNet-1K SLaK-S on a single machine
python -m torch.distributed.launch --nproc_per_node=8 main.py \
--Decom True --sparse --width_factor 1.3 -u 100 --sparsity 0.4 --sparse_init snip --prune_rate 0.3 --growth random \
--epochs 300 --model SLaK_small --drop_path 0.4 --batch_size 64 \
--lr 4e-3 --update_freq 8 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k --num_workers 40 \
--kernel_size 51 49 47 13 5 --output_dir /path/to/save_results
ImageNet-1K SLaK-B on a single machine
python -m torch.distributed.launch --nproc_per_node=16 main.py \
--Decom True --sparse --width_factor 1.3 -u 100 --sparsity 0.4 --sparse_init snip --prune_rate 0.3 --growth random \
--epochs 300 --model SLaK_base --drop_path 0.5 --batch_size 32 \
--lr 4e-3 --update_freq 8 --model_ema true --model_ema_eval true \
--data_path /path/to/imagenet-1k --num_workers 40 \
--kernel_size 51 49 47 13 5 --output_dir /path/to/save_results
To run ConvNeXt, simple set the kernel size as --kernel_size 7 7 7 7 100. (Make sure that the last number is larger than the first four numbers)
Training code for large-kernel distillation
Distilling SLaK-S to ConNeXt-S with NKD, 300 epoches
python -m torch.distributed.launch --nproc_per_node=4 main_KD.py \
--resume /path/to/SLaK-Small/checkpoint --Decom True --T 3.0 --width_factor 1.3 -u 2000 --distill_resume --lr_fd 3e-5 --epochs 300 --model SLaK_small --distill_type NKD --model_s SLaK_small --drop_path 0.1 --batch_size 64 --lr 4e-3 --update_freq 16 --model_ema true --model_ema_eval false \
--data_path /path/to/imagenet-1k --num_workers 40 \
--kernel_size 51 49 47 13 5 --output_dir /path/to/save_results
Distilling SLaK-T to ConNeXt-T with NKD, 300 epoches
outdir=/gpfs/work3/0/prjste21060/projects/datasets/T3_bnTrue_NKD_STConvNext_300ep
python -m torch.distributed.launch --nproc_per_node=4 main_KD.py \
--resume /path/to/SLaK-tiny/checkpoint --Decom True --T 3.0 --width_factor 1.3 -u 2000 --lr_fd 3e-5 --epochs 300 --model SLaK_tiny --distill_resume --distill_type NKD --model_s SLaK_tiny --drop_path 0.1 --batch_size 64 --lr 4e-3 --update_freq 8 --model_ema true --model_ema_eval false \
--data_path /path/to/imagenet-1k --num_workers 40 \
--kernel_size 51 49 47 13 5 --output_dir /path/to/save_results
Evaluation
We give an example evaluation command for a SLaK_tiny on ImageNet-1K :
Single-GPU
python main.py --model SLaK_tiny --eval true \
--Decom True --kernel_size 51 49 47 13 5 --width_factor 1.3 \
--resume path/to/checkpoint \
--input_size 224 --drop_path 0.2 \
--data_path /path/to/imagenet-1k
Multi-GPUs
python -m torch.distributed.launch --nproc_per_node=8 main.py \
--model SLaK_tiny --eval true \
--Decom True --kernel_size 51 49 47 13 5 --width_factor 1.3 \
--resume path/to/checkpoint \
--input_size 224 --drop_path 0.2 \
--data_path /path/to/imagenet-1k
Semantic Segmentation and Object Detection
Semantic Segmentation on ADE20K
name | Configuration | kernel size | mIoU | #params | FLOPs | model |
---|---|---|---|---|---|---|
ConvNeXt-T | 300epochs/160K | 7x7 | 46.0 | 60M | 939G | ConvNeXt |
SLaK-T | 300epochs/160K | 51x51 | 47.6 | 65M | 936G | Surf Drive |
ConvNeXt-S | 300epochs/160K | 7x7 | 48.7 | 82M | 1027G | ConvNeXt |
SLaK-S | 300epochs/160K | 51x51 | 49.4 | 91M | 1028G | Surf Drive |
ConvNeXt-B | 300epochs/160K | 7x7 | 49.1 | 122M | 1170G | ConvNeXt |
SLaK-B | 300epochs/160K | 51x51 | 50.0 | 135M | 1172G | Surf Drive |
Object detection and segmentation on MS COCO: 120epochs/12epochs refers to 120 epochs of supervised training followed by 12 epochs of finetuning.
name | Configuration | kernel size | model | ||||||
---|---|---|---|---|---|---|---|---|---|
ConvNeXt-T | 120epochs/12epochs | 7x7 | 47.3 | 65.9 | 51.5 | 41.1 | 63.2 | 44.4 | ConvNeXt |
SLaK-T | 120epochs/12epochs | 51x51 | 48.4 | 67.2 | 52.5 | 41.8 | 64.4 | 45.2 | Surf Drive |
ConvNeXt-T | 300epochs/36epochs | 7x7 | 50.4 | 69.1 | 54.8 | 43.7 | 66.5 | 47.3 | ConvNeXt |
SLaK-T | 300epochs/36epochs | 51x51 | 51.3 | 70.0 | 55.7 | 44.3 | 67.2 | 48.1 | [Surf Drive] |
We use MMSegmentation and MMDetection frameworks. Just clone MMSegmentation or MMDetection, and
- Put
segmentation/slak.py
intommsegmentation/mmseg/models/backbones/
ormmdetection/mmdet/models/backbones/
. The only difference betweensegmentation/slak.py
andSLaK.py
for ImageNet classification is the@BACKBONES.register_module
. - Add SLaK into
mmsegmentation/mmseg/models/backbones/__init__.py
ormmdetection/mmdet/models/backbones/__init__.py
. That is
...
from .slak import SLaK
__all__ = ['ResNet', ..., 'SLaK']
- Put
segmentation/configs/*.py
intommsegmentation/configs/SLaK/
ordetection/configs/*.py
intommdetection/configs/SLaK/
; put files ofmmsegmentation/mmseg/core/optimizers/''' into
mmsegmentation/mmseg/core/optimizers/```. - Download and use our weights. For examples, to evaluate SLaK-tiny + UperNet on ADE20K
python -m torch.distributed.launch --nproc_per_node=4 tools/test.py configs/SLaK/upernet_slak_tiny_512_80k_ade20k_ss.py --launcher pytorch --eval mIoU
- Or you may finetune our released pretrained weights
bash tools/dist_train.sh configs/SLaK/upernet_slak_tiny_512_80k_ade20k_ss.py 4 --work-dir ADE20_SLaK_51_sparse_1000ite/ --auto-resume --seed 0 --deterministic
The path of pretrained models is 'checkpoint_file' in 'upernet_slak_tiny_512_80k_ade20k_ss'.
Visualizing the Effective Receptive Field
The code is highly based on the libracy of RepLKNet. We have released our script to visualize and analyze the Effective Receptive Field (ERF). The For example, to automatically download the ResNet-101 from torchvision and obtain the aggregated contribution score matrix,
python erf/visualize_erf.py --model resnet101 --data_path /path/to/imagenet-1k --save_path resnet101_erf_matrix.npy
Then calculate the high-contribution area ratio and visualize the ERF by
python erf/analyze_erf.py --source resnet101_erf_matrix.npy --heatmap_save resnet101_heatmap.png
Note this plotting script works with matplotlib 3.3.
To visualize your own model, first define a model that outputs the last feature map rather than the logits (following this example), add the code for building model and loading weights here, then
python erf/visualize_erf.py --model your_model --weights /path/to/your/weights --data_path /path/to/imagenet-1k --save_path your_model_erf_matrix.npy
We have provided the saved matrices and source code to help reproduce. To reproduce the results of Figure 3 in our paper, run
python erf/erf_slak51_convnext7_convnext31.py
Acknowledgement
The released PyTorch training script is based on the code of ConvNeXt and RepLKNet, which were built using the timm library, DeiT and BEiT repositories.
We thank the MegEngine team at MEGVII Technology and the authors of RepLKNet for releasing the efficient implementation of large-kernel convolution.
License
This project is released under the MIT license.
Contact
Shiwei Liu: [email protected]
Homepage: https://shiweiliuiiiiiii.github.io/
My open-sourced papers and repos:
-
ITOP (ICML 2021) A concept to train sparse model to dense performance.
Do We Actually Need Dense Over-Parameterization? In-Time Over-Parameterization in Sparse Training
code. -
Selfish-RNN (ICML 2021) Selfish Sparse RNN Training.
Selfish Sparse RNN Training
code. -
GraNet (NeurIPS 2021) A State-of-the-art brain-inspired sparse training method.
Sparse Training via Boosting Pruning Plasticity with Neuroregeneration
code. -
Random_Pruning (ICLR 2022) The Unreasonable Effectiveness of Random Pruning
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training
code. -
FreeTickets (ICLR 2022) Efficient Ensemble
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity.
code.
If you find this repository useful, please consider giving a star star and cite our paper.
@article{liu2022more,
title={More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity},
author={Liu, Shiwei and Chen, Tianlong and Chen, Xiaohan and Chen, Xuxi and Xiao, Qiao and Wu, Boqian and Pechenizkiy, Mykola and Mocanu, Decebal and Wang, Zhangyang},
journal={arXiv preprint arXiv:2207.03620},
year={2022}
}