EN | 简体中文
AnglE📐: Angle-optimized Text Embeddings
It is Angle 📐, not Angel 👼.
🔥 A New SOTA for Semantic Textual Similarity!
🔥 Our universal sentence embedding WhereIsAI/UAE-Large-V1 achieves SOTA on the MTEB Leaderboard with an average score of 64.64!
🤗 Pretrained Models
🤗 HF | LoRA Weight | Dependent Backbone | LLM | Language | Prompt | Pooling Strategy | Examples |
---|---|---|---|---|---|---|---|
WhereIsAI/UAE-Large-V1 | N | N | N | EN | Prompts.C for retrieval purposes, None for others |
cls | |
SeanLee97/angle-llama-13b-nli | Y | NousResearch/Llama-2-13b-hf | Y | EN | Prompts.A |
last token | / |
SeanLee97/angle-llama-7b-nli-v2 | Y | NousResearch/Llama-2-7b-hf | Y | EN | Prompts.A |
last token | / |
SeanLee97/angle-llama-7b-nli-20231027 | Y | NousResearch/Llama-2-7b-hf | Y | EN | Prompts.A |
last token | / |
SeanLee97/angle-bert-base-uncased-nli-en-v1 | N | N | N | EN | N | cls_avg |
/ |
SeanLee97/angle-roberta-wwm-base-zhnli-v1 | N | N | N | ZH-CN | N | cls |
/ |
SeanLee97/angle-llama-7b-zhnli-v1 | Y | NousResearch/Llama-2-7b-hf | Y | ZH-CN | Prompts.B |
last token | / |
💡 If the selected model is a LoRA weight, it must specify the corresponding dependent backbone.
📝 Training Details:
1) SeanLee97/angle-llama-7b-nli-20231027
We fine-tuned AnglE-LLaMA using 4 RTX 3090 Ti (24GB), the training script is as follows:
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 --master_port=1234 train_angle.py \
--task NLI-STS --save_dir ckpts/NLI-STS-angle-llama-7b \
--w2 35 --learning_rate 2e-4 --maxlen 45 \
--lora_r 32 --lora_alpha 32 --lora_dropout 0.1 \
--save_steps 200 --batch_size 160 --seed 42 --do_eval 0 --load_kbit 4 --gradient_accumulation_steps 4 --epochs 1
The evaluation script is as follows:
CUDA_VISIBLE_DEVICES=0,1 python eval.py \
--load_kbit 16 \
--model_name_or_path NousResearch/Llama-2-7b-hf \
--lora_weight SeanLee97/angle-llama-7b-nli-20231027
Results
English STS Results
Model | STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | Avg. |
---|---|---|---|---|---|---|---|---|
SeanLee97/angle-llama-7b-nli-20231027 | 78.68 | 90.58 | 85.49 | 89.56 | 86.91 | 88.92 | 81.18 | 85.90 |
SeanLee97/angle-llama-7b-nli-v2 | 79.00 | 90.56 | 85.79 | 89.43 | 87.00 | 88.97 | 80.94 | 85.96 |
SeanLee97/angle-llama-13b-nli | 79.33 | 90.65 | 86.89 | 90.45 | 87.32 | 89.69 | 81.32 | 86.52 |
SeanLee97/angle-bert-base-uncased-nli-en-v1 | 75.09 | 85.56 | 80.66 | 86.44 | 82.47 | 85.16 | 81.23 | 82.37 |
Chinese STS Results
Model | ATEC | BQ | LCQMC | PAWSX | STS-B | SOHU-dd | SOHU-dc | Avg. |
---|---|---|---|---|---|---|---|---|
^shibing624/text2vec-bge-large-chinese | 38.41 | 61.34 | 71.72 | 35.15 | 76.44 | 71.81 | 63.15 | 59.72 |
^shibing624/text2vec-base-chinese-paraphrase | 44.89 | 63.58 | 74.24 | 40.90 | 78.93 | 76.70 | 63.30 | 63.08 |
SeanLee97/angle-roberta-wwm-base-zhnli-v1 | 49.49 | 72.47 | 78.33 | 59.13 | 77.14 | 72.36 | 60.53 | 67.06 |
SeanLee97/angle-llama-7b-zhnli-v1 | 50.44 | 71.95 | 78.90 | 56.57 | 81.11 | 68.11 | 52.02 | 65.59 |
^ denotes baselines, their results are retrieved from: https://github.com/shibing624/text2vec
Usage
AnglE supports two APIs, one is the transformers
API, the other is the AnglE
API. If you want to use the AnglE
API, please install AnglE first:
python -m pip install -U angle-emb
UAE
- For Retrieval Purposes
For retrieval purposes, please use the prompt Prompts.C
.
from angle_emb import AnglE, Prompts
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
angle.set_prompt(prompt=Prompts.C)
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
print(vecs)
- For non-Retrieval Purposes
from angle_emb import AnglE
angle = AnglE.from_pretrained('WhereIsAI/UAE-Large-V1', pooling_strategy='cls').cuda()
vec = angle.encode('hello world', to_numpy=True)
print(vec)
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
print(vecs)
Difference between retrieval and non-retrieval sentence embeddings. [click to expand]
In UAE, we use different approaches for retrieval and non-retrieval tasks, each serving a different purpose.
Retrieval tasks aim to find relevant documents, and as a result, the related documents may not have strict semantic similarities to each other.
For instance, when querying "How about ChatGPT?", the related documents are those that contain information related to "ChatGPT," such as "ChatGPT is amazing..." or "ChatGPT is bad....".
Conversely, non-retrieval tasks, such as semantic textual similarity, require sentences that are semantically similar.
For example, a sentence semantically similar to "How about ChatGPT?" could be "What is your opinion about ChatGPT?".
To distinguish between these two types of tasks, we use different prompts.
For retrieval tasks, we use the prompt "Represent this sentence for searching relevant passages: {text}" (Prompts.C in angle_emb).
For non-retrieval tasks, we set the prompt to empty, i.e., just input your text without specifying a prompt.
So, if your scenario is retrieval-related, it is highly recommended to set the prompt with angle.set_prompt(prompt=Prompts.C). If not, leave the prompt empty or use angle.set_prompt(prompt=None).
Angle-LLaMA
- AnglE
from angle_emb import AnglE, Prompts
angle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf', pretrained_lora_path='SeanLee97/angle-llama-7b-nli-v2')
print('All predefined prompts:', Prompts.list_prompts())
angle.set_prompt(prompt=Prompts.A)
print('prompt:', angle.prompt)
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
print(vecs)
- transformers
from angle_emb import AnglE
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
peft_model_id = 'SeanLee97/angle-llama-7b-nli-v2'
config = PeftConfig.from_pretrained(peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path).bfloat16().cuda()
model = PeftModel.from_pretrained(model, peft_model_id).cuda()
def decorate_text(text: str):
return Prompts.A.format(text=text)
inputs = 'hello world!'
tok = tokenizer([decorate_text(inputs)], return_tensors='pt')
for k, v in tok.items():
tok[k] = v.cuda()
vec = model(output_hidden_states=True, **tok).hidden_states[-1][:, -1].float().detach().cpu().numpy()
print(vec)
Angle-BERT
- AnglE
from angle_emb import AnglE
angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', pooling_strategy='cls_avg').cuda()
vec = angle.encode('hello world', to_numpy=True)
print(vec)
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
print(vecs)
- transformers
import torch
from transformers import AutoModel, AutoTokenizer
model_id = 'SeanLee97/angle-bert-base-uncased-nli-en-v1'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModel.from_pretrained(model_id).cuda()
inputs = 'hello world!'
tok = tokenizer([inputs], return_tensors='pt')
for k, v in tok.items():
tok[k] = v.cuda()
hidden_state = model(**tok).last_hidden_state
vec = (hidden_state[:, 0] + torch.mean(hidden_state, dim=1)) / 2.0
print(vec)
Train Custom AnglE Model
1. Train NLI
-
Prepare your gpu environment
-
Install python dependencies
python -m pip install -r requirements.txt
- Download data
- Download multi_nli + snli:
$ cd data
$ sh download_data.sh
- Download sts datasets
$ cd SentEval/data/downstream
$ bash download_dataset.sh
2. Custom Train
from datasets import load_dataset
from angle_emb import AnglE, AngleDataTokenizer
# 1. load pretrained model
angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', max_length=128, pooling_strategy='cls').cuda()
# 2. load dataset
# `text1`, `text2`, and `label` are three required columns.
ds = load_dataset('mteb/stsbenchmark-sts')
ds = ds.map(lambda obj: {"text1": str(obj["sentence1"]), "text2": str(obj['sentence2']), "label": obj['score']})
ds = ds.select_columns(["text1", "text2", "label"])
# 3. transform data
train_ds = ds['train'].shuffle().map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
valid_ds = ds['validation'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
test_ds = ds['test'].map(AngleDataTokenizer(angle.tokenizer, angle.max_length), num_proc=8)
# 4. fit
angle.fit(
train_ds=train_ds,
valid_ds=valid_ds,
output_dir='ckpts/sts-b',
batch_size=32,
epochs=5,
learning_rate=2e-5,
save_steps=100,
eval_steps=1000,
warmup_steps=0,
gradient_accumulation_steps=1,
loss_kwargs={
'w1': 1.0,
'w2': 1.0,
'w3': 1.0,
'cosine_tau': 20,
'ibn_tau': 20,
'angle_tau': 1.0
},
fp16=True,
logging_steps=100
)
# 5. evaluate
corrcoef, accuracy = angle.evaluate(test_ds, device=angle.device)
print('corrcoef:', corrcoef)
Citation
You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:
@article{li2023angle,
title={AnglE-optimized Text Embeddings},
author={Li, Xianming and Li, Jing},
journal={arXiv preprint arXiv:2309.12871},
year={2023}
}
ChangeLogs
📅 | Description |
---|---|
2023 Dec 4 | Release a universal English sentence embedding model: WhereIsAI/UAE-Large-V1 |
2023 Nov 2 | Release an English pretrained model: SeanLee97/angle-llama-13b-nli |
2023 Oct 28 | Release two chinese pretrained models: SeanLee97/angle-roberta-wwm-base-zhnli-v1 and SeanLee97/angle-llama-7b-zhnli-v1 ; Add chinese README.md |