• Stars
    star
    209
  • Rank 188,325 (Top 4 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

The official PyTorch implementation of "FullSubNet+: Channel Attention FullSubNet with Complex Spectrograms for Speech Enhancement".

FullSubNet+

This Git repository for the official PyTorch implementation of "FullSubNet+: Channel Attention FullSubNet with Complex Spectrograms for Speech Enhancement", accepted by ICASSP 2022.

📜[Full Paper] ▶[Demo] 💿[Checkpoint]

Requirements

  • Linux or macOS

  • python>=3.6

  • Anaconda or Miniconda

  • NVIDIA GPU + CUDA CuDNN (CPU can also be supported)

Environment && Installation

Install Anaconda or Miniconda, and then install conda and pip packages:

# Create conda environment
conda create --name speech_enhance python=3.6
conda activate speech_enhance

# Install conda packages
# Check python=3.8, cudatoolkit=10.2, pytorch=1.7.1, torchaudio=0.7
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
conda install tensorboard joblib matplotlib

# Install pip packages
# Check librosa=0.8
pip install Cython
pip install librosa pesq pypesq pystoi tqdm toml colorful mir_eval torch_complex

# (Optional) If you want to load "mp3" format audio in your dataset
conda install -c conda-forge ffmpeg

Quick Usage

Clone the repository:

git clone https://github.com/hit-thusz-RookieCJ/FullSubNet-plus.git
cd FullSubNet-plus

Download the pre-trained checkpoint, and input commands:

source activate speech_enhance
python -m speech_enhance.tools.inference \
  -C config/inference.toml \
  -M $MODEL_DIR \
  -I $INPUT_DIR \
  -O $OUTPUT_DIR

Start Up

Clone

git clone https://github.com/hit-thusz-RookieCJ/FullSubNet-plus.git
cd FullSubNet-plus

Data preparation

Train data

Please prepare your data in the data dir as like:

  • data/DNS-Challenge/DNS-Challenge-interspeech2020-master/
  • data/DNS-Challenge/DNS-Challenge-master/

and set the train dir in the script run.sh.

Then:

source activate speech_enhance
bash run.sh 0   # peprare training list or meta file

Test data

Please prepare your test cases dir like: data/test_cases_<name>, and set the test dir in the script run.sh.

Training

First, you need to modify the various configurations in config/train.toml for training.

Then you can run training:

source activate speech_enhance
bash run.sh 1   

Inference

After training, you can enhance noisy speech. Before inference, you first need to modify the configuration in config/inference.toml.

You can also run inference:

source activate speech_enhance
bash run.sh 2

Or you can just use inference.sh:

source activate speech_enhance
bash inference.sh

Eval

Calculating bjective metrics (SI_SDR, STOI, WB_PESQ, NB_PESQ, etc.) :

bash metrics.sh

Obtain subjective scores (DNS_MOS):

python ./speech_enhance/tools/dns_mos.py --testset_dir $YOUR_TESTSET_DIR --score_file $YOUR_SAVE_DIR

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{chen2022fullsubnet+,
  title={FullSubNet+: Channel Attention FullSubNet with Complex Spectrograms for Speech Enhancement},
  author={Chen, Jun and Wang, Zilin and Tuo, Deyi and Wu, Zhiyong and Kang, Shiyin and Meng, Helen},
  booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={7857--7861},
  year={2022},
  organization={IEEE}
}

More Repositories

1

CSSummerCamp2021

关于2021年CS保研夏令营通知公告的汇总。欢迎大家积极分享夏令营信息,资瓷一下互联网精神吼不吼啊?
778
star
2

CSYuTuiMian2021

关于2021年CS保研预推免通知公告的汇总
398
star
3

Inter-SubNet

The official PyTorch implementation of "Inter-SubNet: Speech Enhancement with Subband Interaction", accepted by ICASSP 2023.
Python
82
star
4

HIT-Database

哈工大数据库系统课程相关仓库😉
Java
54
star
5

Pattern-recognition-and-deep-learning

A simple tutorial for pytorch in deeplearning.
Python
47
star
6

dns_mos_calculate

Code for calculate DNS_MOS.
Python
23
star
7

HIT-Computer-Network

哈工大计算机网络课程相关仓库😁
Java
16
star
8

Inter-SubNet_demo

Please visit https://rookiejunchen.github.io/Inter-SubNet_demo/
SCSS
5
star
9

crawler_for_weibo_fans

crawler for weibo fans
Python
3
star
10

FS-CANet

A Page Demo For FS-CANet:https://hit-thusz-rookiecj.github.io/FS-CANet/
SCSS
3
star
11

HIT-Artificial-Intelligence

哈工大人工智能课程课件、实验和作业相应答案
Python
3
star
12

HIT-Automata

形式语言与自动机
3
star
13

HIT-Compiling-System

哈工大编译系统的课件、课上要点归纳以及习题
3
star
14

HIT-CSAPP

哈工大计算机系统课程
SWIG
1
star
15

HIT-Algorithm-Design-and-Analysis

算法设计与分析
Java
1
star
16

sc-fullsubnet-plus.github.io

A Page Demo For FullSubNet++:https://hit-thusz-rookiecj.github.io/sc-fullsubnet-plus.github.io/
SCSS
1
star
17

HIT-Software-Construction

哈工大软件构造课程相关仓库
Python
1
star
18

HIT-Computer-Composition

哈工大计算机组成原理课程相关仓库😁
1
star