• Stars
    star
    186
  • Rank 207,316 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created about 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Fully Convolutional HarDNet for Segmentation in Pytorch

FCHarDNet

Aug-15-2021 Update

  • Added a new v2_transform() method to replace torch.cat + nn.Conv2d combinations with CatConv2d, an all-in-1 fused cuda kernel combining Concat and Conv2d.

  • Inference on TitanV speedup from 70 fps to 99 fps

  • CatConv2d Installation

cd CatConv2d/
python setup.py install

(Please note that backward path for CatConv2d hasn't been implemented)


Fully Convolutional HarDNet for Segmentation in Pytorch

Architecture

  • Simple U-shaped encoder-decoder structure
  • Conv3x3/Conv1x1 only (including the first layer)
  • No self-attention layer or Pyramid Pooling

Results

Method #Param
(M)
GMACs /
GFLOPs
Cityscapes
mIoU
fps on Titan-V
@1024x2048
fps on 1080ti
@1024x2048
ICNet 7.7 30.7 69.5 63 48
SwiftNetRN-18 11.8 104 75.5 - 39.9
BiSeNet (1024x2048) 13.4 119 77.7 36 27
BiSeNet (768x1536) 13.4 66.8 74.7 72** 54**
FC-HarDNet-70 4.1 35.4 76.0 70 53
FC-HarDNet-70 V2
(with CatConv2d)
4.1 35.4 76.0 99 63
  • ** Speed tested in 1536x768 instead of full resolution.

DataLoaders implemented

Requirements

  • pytorch >=0.4.0
  • torchvision ==0.2.0
  • scipy
  • tqdm
  • tensorboardX

Usage

Setup config file

Please see the usage section in meetshah1995/pytorch-semseg

To train the model :

python train.py [-h] [--config [CONFIG]]

--config                Configuration file to use (default: hardnet.yml)

To validate the model :

usage: validate.py [-h] [--config [CONFIG]] [--model_path [MODEL_PATH]] [--save_image]
                       [--eval_flip] [--measure_time]

  --config              Config file to be used
  --model_path          Path to the saved model
  --eval_flip           Enable evaluation with flipped image | False by default
  --measure_time        Enable evaluation with time (fps) measurement | True by default
  --save_image          Enable writing result images to out_rgb (pred label blended images) and out_predID

Pretrained Weights

  • Cityscapes pretrained weights: Download
    (Val mIoU: 77.7, Test mIoU: 75.9)
  • Cityscapes pretrained with color jitter augmentation: Download
    (Val mIoU: 77.4, Test mIoU: 76.0)
  • HarDNet-Petite weights pretrained by ImageNet:
    included in weights/hardnet_petite_base.pth

Prediction Samples