• Stars
    star
    126
  • Rank 284,543 (Top 6 %)
  • Language
    Python
  • Created about 5 years ago
  • Updated over 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Chinese NER using Lattice LSTM. Reproduction for ACL 2018 paper.

中文

English

支持批并行的LatticeLSTM

运行环境:

  • python >= 3.7.3
  • fastNLP >= dev.0.5.0
  • pytorch >= 1.1.0
  • numpy >= 1.16.4
  • fitlog >= 0.2.0

支持的数据集:

未包含的数据集可以通过提供增加类似 load_data.py 中 load_ontonotes4ner 这个输出格式的函数来增加对其的支持

性能:

数据集 目前达到的F1分数(test) 原文中的F1分数(test)
Weibo 58.66(可能有误) 58.79
Resume 95.18 94.46
Ontonote 73.62 73.88

备注:Weibo数据集我用的是V2版本,也就是更新过的版本,根据杨杰博士Github上LatticeLSTM仓库里的某个issue,应该是一致的。

如有任何疑问请联系:


Batch Parallel LatticeLSTM

Environment:

  • python >= 3.7.3
  • fastNLP >= dev.0.5.0
  • pytorch >= 1.1.0
  • numpy >= 1.16.4
  • fitlog >= 0.2.0

Dataset:

  • Resume,downloaded from here
  • Ontonote
  • Weibo

to those unincluded dataset, you can write the interface function whose output form is like load_ontonotes4ner in load_data.py

Performance:

Dataset F1 of my code(test) F1 in paper(test)
Weibo 58.66(maybe wrong) 58.79
Resume 95.18 94.46
Ontonote 73.62 73.88

PS:The Weibo dataset I use is V2, namely revised version.

If any confusion, please contact: