• Stars
    star
    1,076
  • Rank 42,988 (Top 0.9 %)
  • Language
  • License
    MIT License
  • Created over 1 year ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Awesome LLM compression research papers and tools.

Awesome-LLM-Compression Awesome

Awesome LLM compression research papers and tools to accelerate the LLM training and inference.

Contents

Papers

Survey

  • A Survey on Model Compression for Large Language Models
    Arxiv 2023 [Paper]

Quantization

  • ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers
    NeurIPS 2022 [Paper] [Code (DeepSpeed)]

  • LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale
    NeurIPS 2022 [Paper] [Code]

  • LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models
    Arxiv 2022 [Paper]

  • SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models
    ICML 2023 [Paper] [Code]

  • FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization
    ICML 2023 [Paper] [Code (DeepSpeed)]

  • Understanding INT4 Quantization for Transformer Models: Latency Speedup, Composability, and Failure Cases
    ICML 2023 [Paper] [Code]

  • GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers
    ICLR 2023 [Paper] [Code]

  • RPTQ: Reorder-based Post-training Quantization for Large Language Models
    Arxiv 2023 [Paper] [Code]

  • PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language Models
    ACL 2023 [Paper]

  • Boost Transformer-based Language Models with GPU-Friendly Sparsity and Quantization
    ACL 2023 [Paper]

  • Outlier Suppression+: Accurate quantization of large language models by equivalent and optimal shifting and scaling
    Arxiv 2023 [Paper]

  • Quantized Distributed Training of Large Models with Convergence Guarantees
    Arxiv 2023 [Paper]

  • ZeroQuant-V2: Exploring Post-training Quantization in LLMs from Comprehensive Study to Low Rank Compensation
    Arxiv 2023 [Paper] [Code]

  • QLoRA: Efficient Finetuning of Quantized LLMs
    Arxiv 2023 [Paper] [Code]

  • Integer or Floating Point? New Outlooks for Low-Bit Quantization on Large Language Models
    Arxiv 2023 [Paper]

  • The Quantization Model of Neural Scaling
    Arxiv 2023 [Paper]

  • Memory-Efficient Fine-Tuning of Compressed Large Language Models via sub-4-bit Integer Quantization
    Arxiv 2023 [Paper]

  • Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt
    Arxiv 2023 [Paper]

  • AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration
    Arxiv 2023 [Paper] [Code]

  • LLM-QAT: Data-Free Quantization Aware Training for Large Language Models
    Arxiv 2023 [Paper] [Code]

  • SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight Compression
    Arxiv 2023 [Paper] [Code]

  • OWQ: Lessons learned from activation outliers for weight quantization in large language models
    Arxiv 2023 [Paper]

  • SqueezeLLM: Dense-and-Sparse Quantization
    Arxiv 2023 [Paper] [Code]

  • INT2.1: Towards Fine-Tunable Quantized Large Language Models with Error Correction through Low-Rank Adaptation
    Arxiv 2023 [Paper]

  • INT-FP-QSim: Mixed Precision and Formats For Large Language Models and Vision Transformers
    Arxiv 2023 [Paper] [Code]

  • QIGen: Generating Efficient Kernels for Quantized Inference on Large Language Models
    Arxiv 2023 [Paper] [Code]

  • Do Emergent Abilities Exist in Quantized Large Language Models: An Empirical Study
    Arxiv 2023 [Paper]

  • ZeroQuant-FP: A Leap Forward in LLMs Post-Training W4A8 Quantization Using Floating-Point Formats
    Arxiv 2023 [Paper] [Code (DeepSpeed)]

  • OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-Victim Pair Quantization
    ISCA 2023 [Paper]

  • QuIP: 2-Bit Quantization of Large Language Models With Guarantees
    Arxiv 2023 [Paper] [Code]

  • NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search
    Arxiv 2023 [Paper]

  • GPT-Zip: Deep Compression of Finetuned Large Language Models
    ICML 2023 Workshop ES-FoMO [Paper]

  • Generating Efficient Kernels for Quantized Inference on Large Language Models
    ICML 2023 Workshop ES-FoMO [Paper]

  • Gradient-Based Post-Training Quantization: Challenging the Status Quo
    Arxiv 2023 [Paper]

  • FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only Quantization for LLMs
    Arxiv 2023 [Paper]

  • OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models
    Arxiv 2023 [Paper]

  • FPTQ: Fine-grained Post-Training Quantization for Large Language Models
    Arxiv 2023 [Paper]

  • eDKM: An Efficient and Accurate Train-time Weight Clustering for Large Language Models
    Arxiv 2023 [Paper]

  • QuantEase: Optimization-based Quantization for Language Models -- An Efficient and Intuitive Algorithm
    Arxiv 2023 [Paper]

  • Norm Tweaking: High-performance Low-bit Quantization of Large Language Models
    Arxiv 2023 [Paper]

  • Understanding the Impact of Post-Training Quantization on Large-scale Language Models
    Arxiv 2023 [Paper]

  • Optimize Weight Rounding via Signed Gradient Descent for the Quantization of LLMs
    Arxiv 2023 [Paper] [Code]

Pruning and Sparsity

  • The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers
    ICLR 2023 [Paper]

  • Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time
    ICML 2023 [Paper] [Code]

  • LoSparse: Structured Compression of Large Language Models based on Low-Rank and Sparse Approximation
    ICML 2023 [Paper] [Code]

  • SparseGPT: Massive Language Models Can Be Accurately Pruned in One-Shot
    Arxiv 2023 [Paper] [Code]

  • LLM-Pruner: On the Structural Pruning of Large Language Models
    Arxiv 2023 [Paper] [Code]

  • Prune and Tune: Improving Efficient Pruning Techniques for Massive Language Models
    ICLR 2023 TinyPapers [Paper]

  • Unlocking Context Constraints of LLMs: Enhancing Context Efficiency of LLMs with Self-Information-Based Content Filtering
    Arxiv 2023 [Paper] [Code]

  • Rethinking the Role of Scale for In-Context Learning: An Interpretability-based Case Study at 66 Billion Scale
    Arxiv 2023 [Paper] [Code]

  • A Simple and Effective Pruning Approach for Large Language Models
    Arxiv 2023 [Paper] [Code]

  • Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning
    Arxiv 2023 [Paper]

  • Structural pruning of large language models via neural architecture search
    AutoML 2023 [Paper]

Distillation

  • Lifting the Curse of Capacity Gap in Distilling Language Models
    ACL 2023 [Paper] [Code]

  • Symbolic Chain-of-Thought Distillation: Small Models Can Also "Think" Step-by-Step
    ACL 2023 [Ppaer]

  • Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes
    ACL 2023 [Paper]

  • SCOTT: Self-Consistent Chain-of-Thought Distillation
    ACL 2023 [Paper]

  • DISCO: Distilling Counterfactuals with Large Language Models
    ACL 2023 [Paper] [Code]

  • LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions
    Arxiv 2023 [Paper] [Code]

  • Large Language Model Distillation Doesn't Need a Teacher
    Arxiv 2023 [Paper] [Code]

  • The False Promise of Imitating Proprietary LLMs
    Arxiv 2023 [Paper]

  • GPT4All: Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo
    Arxiv 2023 [Paper] [Code]

  • PaD: Program-aided Distillation Specializes Large Models in Reasoning
    Arxiv 2023 [Paper]

  • Knowledge Distillation of Large Language Models
    Arxiv 2023 [Paper] [Code]

  • GKD: Generalized Knowledge Distillation for Auto-regressive Sequence Models
    Arxiv 2023 [Paper]

  • Chain-of-Thought Prompt Distillation for Multimodal Named Entity and Multimodal Relation Extraction
    Arxiv 2023 [Paper]

  • Task-agnostic Distillation of Encoder-Decoder Language Models
    Arxiv 2023 [Paper]

  • Lion: Adversarial Distillation of Closed-Source Large Language Model
    Arxiv 2023 [Paper] [Code]

Efficient Prompting

  • Did You Read the Instructions? Rethinking the Effectiveness of Task Definitions in Instruction Learning
    ACL 2023 [Paper] [Code]

  • Efficient Prompting via Dynamic In-Context Learning
    Arxiv 2023 [Paper]

  • Learning to Compress Prompts with Gist Tokens
    Arxiv 2023 [Paper] [Code]

  • Batch Prompting: Efficient Inference with Large Language Model APIs
    Arxiv 2023 [Paper] [Code]

  • Adapting Language Models to Compress Contexts
    Arxiv 2023 [Paper] [Code]

  • In-context Autoencoder for Context Compression in a Large Language Model
    Arxiv 2023 [Paper]

  • Discrete Prompt Compression with Reinforcement Learning
    Arxiv 2023 [Paper]

  • BatchPrompt: Accomplish more with less
    Arxiv 2023 [Paper]

Other

  • TensorGPT: Efficient Compression of the Embedding Layer in LLMs based on the Tensor-Train Decomposition
    Arxiv 2023 [Paper]

  • Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers
    Arxiv 2023 [Paper]

  • SkipDecode: Autoregressive Skip Decoding with Batching and Caching for Efficient LLM Inference
    Arxiv 2023 [Paper]

  • Scaling In-Context Demonstrations with Structured Attention
    Arxiv 2023 [Paper]

  • Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM Inference Pipeline
    Arxiv 2023 [Paper] [Code]

  • Text Alignment Is An Efficient Unified Model for Massive NLP Tasks
    Arxiv 2023 [Paper] [Code]

  • CPET: Effective Parameter-Efficient Tuning for Compressed Large Language Models
    Arxiv 2023 [Paper]

  • Ternary Singular Value Decomposition as a Better Parameterized Form in Linear Mapping
    Arxiv 2023 [Paper]

  • LLMCad: Fast and Scalable On-device Large Language Model Inference
    Arxiv 2023 [Paper]

Tools

  • BMCook: Model Compression for Big Models [Code]

  • llama.cpp: Inference of LLaMA model in pure C/C++ [Code]

  • LangChain: Building applications with LLMs through composability [Code]

  • GPTQ-for-LLaMA: 4 bits quantization of LLaMA using GPTQ [Code]

  • Alpaca-CoT: An Instruction Fine-Tuning Platform with Instruction Data Collection and Unified Large Language Models Interface [Code]

  • vllm: A high-throughput and memory-efficient inference and serving engine for LLMs [Code]

  • LLaMA Efficient Tuning: Fine-tuning LLaMA with PEFT (PT+SFT+RLHF with QLoRA) [Code]

  • Efficient-Tuning-LLMs: (Efficient Finetuning of QLoRA LLMs). QLoRA, LLama, bloom, baichuan-7B, GLM [Code]

  • bitsandbytes: 8-bit CUDA functions for PyTorch [Code]

  • ExLlama: A more memory-efficient rewrite of the HF transformers implementation of Llama for use with quantized weights. [Code]

  • lit-gpt: Hackable implementation of state-of-the-art open-source LLMs based on nanoGPT. Supports flash attention, 4-bit and 8-bit quantization, LoRA and LLaMA-Adapter fine-tuning, pre-training. [Code]

  • Lit-LLaMA: Implementation of the LLaMA language model based on nanoGPT. Supports flash attention, Int8 and GPTQ 4bit quantization, LoRA and LLaMA-Adapter fine-tuning, pre-training. [Code]

  • lama.onnx: LLaMa/RWKV onnx models, quantization and testcase [Code]

  • fastLLaMa: An experimental high-performance framework for running Decoder-only LLMs with 4-bit quantization in Python using a C/C++ backend. [Code]

  • Sparsebit: A model compression and acceleration toolbox based on pytorch. [Code]

  • llama2.c: Inference Llama 2 in one file of pure C [Code]

  • Medusa: Simple Framework for Accelerating LLM Generation with Multiple Decoding Heads [Code]

  • Megatron-LM: Ongoing research training transformer models at scale [Code]