• Stars
    star
    120
  • Rank 295,983 (Top 6 %)
  • Language
    Python
  • License
    MIT License
  • Created about 3 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo]

This repository proivdes a 2D medical image interactive segmentation method for segmentation and annotation. image

  • This project was originally developed for our previous work MIDeepSeg, if you find it's useful for your research, please consider to cite the followings:

      @article{luo2021mideepseg,
                title={MIDeepSeg: Minimally interactive segmentation of unseen objects from medical images using deep learning},
                author={Luo, Xiangde and Wang, Guotai and Song, Tao and Zhang, Jingyang and Aertsen, Michael and Deprest, Jan and Ourselin, Sebastien and Vercauteren, Tom and Zhang, Shaoting},
                journal={Medical Image Analysis},
                volume={72},
                pages={102102},
                year={2021},
                publisher={Elsevier}}
    

2D example A visualization comparison of different distance transform methods, following GeodisTK.

Requirements

Before you can use this package for image segmentation. You should:

  • PyTorch version >=1.0.1
  • Some common python packages such as Numpy, Pandas, SimpleITK,OpenCV, pyqt5, scipy......
  • Install the GeodisTK for geodesic distance transformation.
  • Install the SimpleCRF for interactive refinement.

How to use

1, compile the requirement library:

pip install -r requirements.txt
  1. launch the GUI
cd mideepseg
python main.py
  1. load an image for segmentation. Once the image is loaded, Firstly, give some edge points by left mouse to get an initial interactions, click the Segmentation button to obtain an initial segmentation. Then, press left mouse button to give clicks in under-segmented regions, and press right mouse button to give clicks in over-segmented region. Then click the Refinement button, and the segmentation will be updated according to the interactions.

  2. Note that, the pretrained model is only trained with placenta MR-T2 data.

Acknowledgment and Statement

  • This project was designed for academic research, not for clinical or commercial use, as it's a protected patent. If you want to use it for commercial, please contact Prof. Guotai Wang.

More Repositories

1

SSL4MIS

Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.
Python
2,154
star
2

PyMIC

Python
343
star
3

DTC

Semi-supervised Medical Image Segmentation through Dual-task Consistency
Python
288
star
4

WSL4MIS

Scribbles or Points-based weakly-supervised learning for medical image segmentation, a strong baseline, and tutorial for research and application.
Python
199
star
5

CA-Net

Code for Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation.
Python
168
star
6

SimpleCRF

matlab and python wrap of crf and dense crf, both 2d and 3d are supported
C++
164
star
7

WORD

[MedIA2022]WORD: A large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image
Python
146
star
8

DAG4MIA

Domain Adaptation and Generalization for Medical Image Analysis
Python
112
star
9

COPLE-Net

COVID-19 Pneumonia Lesion segmentation network
Python
87
star
10

ACELoss

Implementations of "Learning Euler's Elastica Model for Medical Image Segmentation"
Python
70
star
11

Paper-Reading-Group

List shared papers in our group
64
star
12

UGIR

Uncertainty-Guided Interactive Refinement for Segmentation
Python
58
star
13

SCPM-Net

[MICCAI2020]CPM-Net: A 3D Center-Points Matching Network for Pulmonary Nodule Detection in CT Scans
Python
55
star
14

CDMA

offical code for: Semi-supervised Pathological Image Segmentation via Cross Distillation of Multiple Attentions. MICCAI 2023.
Python
48
star
15

PyMIC_examples

examples of using PyMIC for medical image computing with deep learning
Python
32
star
16

LCOVNet-and-KD

Python
24
star
17

SegRap2023

[SegRap2023]A challenge about organ-at-risk and gross-tumor-volume segmentation in adaptive radiotherapy hosted on MICCAI2023.
Python
23
star
18

UPL-SFDA

Python
22
star
19

SepNet

Code for Automatic Segmentation of Organs-at-Risk from Head-and-Neck CT using Separable Convolutional Neural Network with Hard-Region-Weighted Loss.
Python
21
star
20

FPL-plus

FPL+: Filtered Pseudo Label-based Unsupervised Cross-Modality Adaptation for 3D Medical Image Segmentation
Python
18
star
21

PA-Seg

PA-Seg: Learning from Point Annotations for 3D Medical Image Segmentation using Contextual Regularization and Cross Knowledge Distillation
Python
15
star
22

MyoPS2020

Python
15
star
23

Head-Neck-GTV

Python
15
star
24

HAMIL

Python
10
star
25

PF-Net

Code for PF-Net (Pulmonary Fibrosis Segmentation Network)
Python
10
star
26

DCA-Net

Python
8
star
27

DMSPS

Dynamically Mixed Soft Pseudo-label Supervision for Scribble-Supervised Medical Image Segmentation
Python
7
star
28

UGTST

6
star
29

RPR-Loc

Python
5
star
30

CFENet

Code for Enhancement of High- and Low-Level Features with Improved Attention Method for Medical Image Segmentation
Jupyter Notebook
5
star
31

IPLC

Python
3
star
32

ABCs_2020

Python
2
star
33

UM-CAM

Python
1
star