• Stars
    star
    313
  • Rank 133,714 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created over 6 years ago
  • Updated almost 5 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Learning to Cluster. A deep clustering strategy.

L2C: Learning to Cluster

A clustering strategy with deep neural networks. This blog article provides a generic overview.

Introduction

This repository provides the PyTorch implementation of the transfer learning schemes (L2C) and two learning criteria useful for deep clustering:

*It is renamed from CCL

This repository covers following references:

@inproceedings{Hsu19_MCL,
	title =	    {Multi-class classification without multi-class labels},
	author =    {Yen-Chang Hsu, Zhaoyang Lv, Joel Schlosser, Phillip Odom, Zsolt Kira},
	booktitle = {International Conference on Learning Representations (ICLR)},
	year =      {2019},
	url =       {https://openreview.net/forum?id=SJzR2iRcK7}
}

@inproceedings{Hsu18_L2C,
	title =     {Learning to cluster in order to transfer across domains and tasks},
	author =    {Yen-Chang Hsu and Zhaoyang Lv and Zsolt Kira},
	booktitle = {International Conference on Learning Representations (ICLR)},
	year =      {2018},
	url =       {https://openreview.net/forum?id=ByRWCqvT-}
}

@inproceedings{Hsu16_KCL,
	title =	    {Neural network-based clustering using pairwise constraints},
	author =    {Yen-Chang Hsu and Zsolt Kira},
	booktitle = {ICLR workshop},
	year =      {2016},
	url =       {https://arxiv.org/abs/1511.06321}
}

Preparation

This repository supports PyTorch 1.0, python 2.7, 3.6, and 3.7.

pip install -r requirements.txt

Demo

Supervised Classification/Clustering with only pairwise similarity

# A quick trial:
python demo.py  # Default Dataset:MNIST, Network:LeNet, Loss:MCL
python demo.py --loss KCL

# Lookup available options:
python demo.py -h

# For more examples:
./scripts/exp_supervised_MCL_vs_KCL.sh

Unsupervised Clustering (Cross-task Transfer Learning)

# Learn the Similarity Prediction Network (SPN) with Omniglot_background and then transfer to the 20 alphabets in Omniglot_evaluation.
# Default loss is MCL with an unknown number of clusters (Set a large cluster number, i.e., k=100)
# It takes about half an hour to finish.
python demo_omniglot_transfer.py

# An example of using KCL and set k=gt_#cluster
python demo_omniglot_transfer.py --loss KCL --num_cluster -1

# Lookup available options:
python demo_omniglot_transfer.py -h

# Other examples:
./scripts/exp_unsupervised_transfer_Omniglot.sh

Notes

  • The clustering results are highly dependent on the performance of the Similarity Prediction Network (SPN). For making a fair comparison, the SPN must be kept the same. Our script trains an SPN with random initialization and random data sampling. Once the SPN model is trained, the script will reuse the saved SPN and avoid training a new one.
  • The table below presents the clustering performance with the reference SPN [download]. Put the model file into /outputs folder and run demo_omniglot_transfer.py directly to generate the "MCL(k=100)" column.
  • The performance metric is clustering accuracy (for details, please see L2C paper). Each value in the table is the average of 3 clustering runs. This repository reuses most of the utilities in PyTorch and is different from the Lua-based implementation used in the reference papers. The result (the row with "--Average--") shows the same trend as the papers, but the absolute values have a mild difference. The MCL results here are better than the paper.
Dataset gt #class KCL (k=100) MCL (k=100) KCL (k=gt) MCL (k=gt)
Angelic 20 73.2% 82.2% 89.0% 91.7%
Atemayar_Qelisayer 26 73.3% 89.2% 82.5% 86.0%
Atlantean 26 65.5% 83.3% 89.4% 93.5%
Aurek_Besh 26 88.4% 92.8% 91.5% 92.4%
Avesta 26 79.0% 85.8% 85.4% 86.1%
Ge_ez 26 77.1% 84.0% 85.4% 86.6%
Glagolitic 45 83.9% 85.3% 84.9% 87.4%
Gurmukhi 45 78.8% 78.7% 77.0% 78.0%
Kannada 41 64.6% 81.1% 73.3% 81.2%
Keble 26 91.4% 95.1% 94.7% 94.3%
Malayalam 47 73.5% 75.0% 72.7% 73.0%
Manipuri 40 82.8% 81.2% 85.8% 81.5%
Mongolian 30 84.7% 89.0% 88.3% 90.2%
Old_Church_Slavonic_Cyrillic 45 89.9% 90.7% 88.7% 89.8%
Oriya 46 56.5% 73.4% 63.2% 75.3%
Sylheti 28 61.8% 68.2% 69.8% 80.6%
Syriac_Serto 23 72.1% 82.0% 85.8% 89.8%
Tengwar 25 67.7% 76.4% 82.5% 85.5%
Tibetan 42 81.8% 80.2% 84.3% 81.9%
ULOG 26 53.3% 77.1% 73.0% 89.1%
--Average-- 75.0% 82.5% 82.4% 85.7%

Compare MCL and KCL

The loss surface of MCL is more similar to the cross-entropy (CE) than KCL. Empirically, MCL converged faster than KCL. For details, please refer to the ICLR paper.

Related Applications

Lane detection for autonomous driving / Instance segmentation

@article{Hsu18_InsSeg,
	title =     {Learning to Cluster for Proposal-Free Instance Segmentation},
	author =    {Yen-Chang Hsu, Zheng Xu, Zsolt Kira, Jiawei Huang},
	booktitle = {accepted to the International Joint Conference on Neural Networks (IJCNN)},
	year =      {2018},
	url =       {https://arxiv.org/abs/1803.06459}
}

Acknowledgments

This work was supported by the National Science Foundation and National Robotics Initiative (grant # IIS-1426998) and DARPA’s Lifelong Learning Machines (L2M) program, under Cooperative Agreement HR0011-18-2-001.

More Repositories

1

Continual-Learning-Benchmark

Evaluate three types of task shifting with popular continual learning algorithms.
Python
506
star
2

Awesome-LLM-Robotics

A comprehensive list of papers using large language/multi-modal models for Robotics/RL, including papers, codes, and related websites
298
star
3

CODA-Prompt

PyTorch code for the CVPR'23 paper: "CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning"
Python
125
star
4

AlwaysBeDreaming-DFCIL

PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"
Python
59
star
5

Xmodal-Ctx

Official PyTorch implementation of our CVPR 2022 paper: Beyond a Pre-Trained Object Detector: Cross-Modal Textual and Visual Context for Image Captioning
Python
46
star
6

FeatMatch

PyTorch code for the paper: "FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning"
Python
43
star
7

robo-vln

Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"
Python
34
star
8

MultiAgentPerception

Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"
Python
34
star
9

UNO-IC

Python
28
star
10

DomainGeneralization-Stylization

PyTorch code for: Frustratingly Simple Domain Generalization via Image Stylization
24
star
11

Geometric-Sensitivity-Decomposition

Python
18
star
12

DistillMatch-SSCL

PyTorch code for the IJCNN'21 paper: "Memory-Efficient Semi-Supervised Continual Learning: The World is its Own Replay Buffer"
Python
12
star
13

FTP

This repo hosts the code for the Fast Trainable Projection (FTP) project.
Python
10
star
14

FedFOR

TO BE RELEASED PyTorch code for the preprint: "FedFOR: Stateless Heterogeneous Federated Learning with First-Order Regularization"
2
star