• Stars
    star
    102
  • Rank 335,584 (Top 7 %)
  • Language
    HTML
  • License
    MIT License
  • Created almost 6 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Awesome Maintenance GitHub GitHub GitHub

A practical guide towards explainability and bias evaluation in machine learning

This repo contains the full Jupyter Notebook and code for the Python talk on machine learning explainabilty and algorithmic bias.

YouTube Video of Talk

This Video of talk presented at PyData London 2019 which provides an overview on the motivations for machine learning explainability as well as techniques to introduce explainability and mitigate undesired biases.

Live Slides (Reveal.JS)

The presentation was performed using the RISE plugin to convert the Jupyter notebook into a reveal.js presentation. The reveal.js presentation is hosted live in this repo under the index.html page.

Examples to try it yourself

Code examples to try it yourself:

Open Source Tools used

This example uses the following open source libraries:

  • XAI - We use XAI to showcase data analysis techniques
  • Alibi - We use Alibi to dive into black box model evaluation techniques
  • Seldon Core - We use seldon core to deploy and serve ML models and ML explainers

Summarised version in markdown format

In this next section below you can find the sumarised version of Jupyter notebook / presentation slides in Markdown format.

Contents

This section below contains the code blocks that summarise the 3 steps proposed in the presentation proposed for explainability: 1) Data analysis, 2) Model evaluation and 3) Production monitoring.

1) Data Analysis

Points to cover

1.1) Data imbalances

1.2) Upsampling / downsampling

1.3) Correlations

1.4) Train / test set

1.5) Further techniques

XAI - eXplainable AI

We'll be using the XAI library which is a set of tools to explain machine learning data



https://github.com/EthicalML/XAI





Let's get the new training dataset

X, y, X_train, X_valid, y_train, y_valid, X_display, y_display, df, df_display \
    = get_dataset_2()
df_display.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
age workclass education education-num marital-status occupation relationship ethnicity gender capital-gain capital-loss hours-per-week native-country loan
0 39 State-gov Bachelors 13 Never-married Adm-clerical Not-in-family White Male 2174 0 40 United-States False
1 50 Self-emp-not-inc Bachelors 13 Married-civ-spouse Exec-managerial Husband White Male 0 0 13 United-States False
2 38 Private HS-grad 9 Divorced Handlers-cleaners Not-in-family White Male 0 0 40 United-States False
3 53 Private 11th 7 Married-civ-spouse Handlers-cleaners Husband Black Male 0 0 40 United-States False
4 28 Private Bachelors 13 Married-civ-spouse Prof-specialty Wife Black Female 0 0 40 Cuba False

1.1) Data imbalances

We can visualise the imbalances by looking at the number of examples for each class

im = xai.imbalance_plot(df_display, "gender", threshold=0.55, categorical_cols=["gender"])

png

We can evaluate imbalances by the product of multiple categories

im = xai.imbalance_plot(df_display, "gender", "loan" , categorical_cols=["loan", "gender"])

png

For numeric datasets we can break it down in bins

im = xai.imbalance_plot(df_display, "age" , bins=10)

png

1.2) Upsampling / Downsampling

im = xai.balance(df_display, "ethnicity", "loan", categorical_cols=["ethnicity", "loan"],
                upsample=0.5, downsample=0.5, bins=5)

png

1.3 Correlations hidden in data

We can identify potential correlations across variables through a dendogram visualiation

corr = xai.correlations(df_display, include_categorical=True)

png

1.4) Balanced train/testing sets

X_train_balanced, y_train_balanced, X_valid_balanced, y_valid_balanced, train_idx, test_idx = \
    xai.balanced_train_test_split(
            X, y, "gender", 
            min_per_group=300,
            max_per_group=300,
            categorical_cols=["gender", "loan"])

X_valid_balanced["loan"] = y_valid_balanced
im = xai.imbalance_plot(X_valid_balanced, "gender", "loan", categorical_cols=["gender", "loan"])

png

1.5 Shoutout to other tools and techniques

https://github.com/EthicalML/awesome-production-machine-learning#industrial-strength-visualisation-libraries

2) Model evaluation








Points to cover

2.1) Standard model evaluation metrics

2.2) Global model explanation techniques

2.3) Black box local model explanation techniques

2.4) Other libraries available

Alibi - Black Box Model Explanations


A set of proven scientific techniques to explain ML models as black boxes



https://github.com/SeldonIO/Alibi





Model Evaluation Metrics: White / Black Box

Model Evaluation Metrics: Global vs Local

2.1) Standard model evaluation metrics

# Let's start by building our model with our newly balanced dataset
model = build_model(X)
model.fit(f_in(X_train), y_train, epochs=20, batch_size=512, shuffle=True, validation_data=(f_in(X_valid), y_valid), callbacks=[PlotLossesKeras()], verbose=0, validation_split=0.05,)
probabilities = model.predict(f_in(X_valid))
pred = f_out(probabilities)

png

Log-loss (cost function):
training   (min:    0.311, max:    0.581, cur:    0.311)
validation (min:    0.312, max:    0.464, cur:    0.312)

Accuracy:
training   (min:    0.724, max:    0.856, cur:    0.856)
validation (min:    0.808, max:    0.857, cur:    0.857)
xai.confusion_matrix_plot(y_valid, pred)

png

im = xai.roc_plot(y_valid, pred)

png

im = xai.roc_plot(y_valid, pred, df=X_valid, cross_cols=["gender"], categorical_cols=["gender"])

png

im = xai.metrics_plot(y_valid, pred)

png

im = xai.metrics_plot(y_valid, pred, df=X_valid, cross_cols=["gender"], categorical_cols="gender")

png

2.2) Global black box model evalutaion metrics

imp = xai.feature_importance(X_valid, y_valid, lambda x, y: model.evaluate(f_in(x), y, verbose=0)[1], repeat=1)

png

2.3) Local black box model evaluation metrics

Overview of methods

Anchors


Consists of if-then rules, called the anchors, which sufficiently guarantee the explanation locally and try to maximize the area for which the explanation holds. (ArXiv: Anchors: High-Precision Model-Agnostic Explanations)


from alibi.explainers import AnchorTabular

explainer = AnchorTabular(
    loan_model_alibi.predict, 
    feature_names_alibi, 
    categorical_names=category_map_alibi)

explainer.fit(
    X_train_alibi, 
    disc_perc=[25, 50, 75])

print("Explainer built")
Explainer built
X_test_alibi[:1]
array([[52,  4,  0,  2,  8,  4,  2,  0,  0,  0, 60,  9]])
explanation = explainer.explain(X_test_alibi[:1], threshold=0.95)

print('Anchor: %s' % (' AND '.join(explanation['names'])))
print('Precision: %.2f' % explanation['precision'])
print('Coverage: %.2f' % explanation['coverage'])
Anchor: Marital Status = Separated AND Sex = Female AND Capital Gain <= 0.00
Precision: 0.97
Coverage: 0.10

Counterfactual Explanations

The counterfactual explanation of an outcome or a situation Y takes the form β€œIf X had not occured, Y would not have occured”

1.5 Shoutout to other tools and techniques

https://github.com/EthicalML/awesome-production-machine-learning#explaining-black-box-models-and-datasets

3) Production Monitoring








Key points to cover


  1. Design patterns for explainers

  1. Live demo of explainers

  1. Leveraging humans for explainers

Seldon Core - Production ML in K8s


A language agnostic ML serving & monitoring framework in Kubernetes



https://github.com/SeldonIO/seldon-core





3.1) Design patterns for explainers

Setup Seldon in your kubernetes cluster

%%bash
kubectl create clusterrolebinding kube-system-cluster-admin --clusterrole=cluster-admin --serviceaccount=kube-system:default
helm init
kubectl rollout status deploy/tiller-deploy -n kube-system
helm install seldon-core-operator --name seldon-core-operator --repo https://storage.googleapis.com/seldon-charts
helm install seldon-core-analytics --name seldon-core-analytics --repo https://storage.googleapis.com/seldon-charts
helm install stable/ambassador --name ambassador
from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer

# feature transformation pipeline
ordinal_features = [x for x in range(len(alibi_feature_names)) if x not in list(alibi_category_map.keys())]
ordinal_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),
                                      ('scaler', StandardScaler())])

categorical_features = list(alibi_category_map.keys())
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),
                                          ('onehot', OneHotEncoder(handle_unknown='ignore'))])

preprocessor = ColumnTransformer(transformers=[('num', ordinal_transformer, ordinal_features),
                                               ('cat', categorical_transformer, categorical_features)])
preprocessor.fit(alibi_data)
from sklearn.ensemble import RandomForestClassifier

np.random.seed(0)
clf = RandomForestClassifier(n_estimators=50)
clf.fit(preprocessor.transform(X_train_alibi), y_train_alibi)
!mkdir -p pipeline/pipeline_steps/loanclassifier/

Save the model artefacts so we can deploy them

import dill

with open("pipeline/pipeline_steps/loanclassifier/preprocessor.dill", "wb") as prep_f:
    dill.dump(preprocessor, prep_f)
    
with open("pipeline/pipeline_steps/loanclassifier/model.dill", "wb") as model_f:
    dill.dump(clf, model_f)

Build a Model wrapper that uses the trained models through a predict function

%%writefile pipeline/pipeline_steps/loanclassifier/Model.py
import dill

class Model:
    def __init__(self, *args, **kwargs):
        
        with open("preprocessor.dill", "rb") as prep_f:
            self.preprocessor = dill.load(prep_f)
        with open("model.dill", "rb") as model_f:
            self.clf = dill.load(model_f)
        
    def predict(self, X, feature_names=[]):
        X_prep = self.preprocessor.transform(X)
        proba = self.clf.predict_proba(X_prep)
        return proba

Add the dependencies for the wrapper to work

%%writefile pipeline/pipeline_steps/loanclassifier/requirements.txt
scikit-learn==0.20.1
dill==0.2.9
scikit-image==0.15.0
scikit-learn==0.20.1
scipy==1.1.0
numpy==1.15.4
!mkdir pipeline/pipeline_steps/loanclassifier/.s2i
%%writefile pipeline/pipeline_steps/loanclassifier/.s2i/environment
MODEL_NAME=Model
API_TYPE=REST
SERVICE_TYPE=MODEL
PERSISTENCE=0

Use the source2image command to containerize code

!s2i build pipeline/pipeline_steps/loanclassifier seldonio/seldon-core-s2i-python3:0.8 loanclassifier:0.1

Define the graph of your pipeline with individual models

%%writefile pipeline/pipeline_steps/loanclassifier/loanclassifiermodel.yaml
apiVersion: machinelearning.seldon.io/v1alpha2
kind: SeldonDeployment
metadata:
  labels:
    app: seldon
  name: loanclassifier
spec:
  name: loanclassifier
  predictors:
  - componentSpecs:
    - spec:
        containers:
        - image: loanclassifier:0.1
          name: model
    graph:
      children: []
      name: model
      type: MODEL
      endpoint:
        type: REST
    name: loanclassifier
    replicas: 1

Deploy your model!

!kubectl apply -f pipeline/pipeline_steps/loanclassifier/loanclassifiermodel.yaml

Now we can send data through the REST API

X_test_alibi[:1]
array([[52,  4,  0,  2,  8,  4,  2,  0,  0,  0, 60,  9]])
%%bash
curl -X POST -H 'Content-Type: application/json' \
    -d "{'data': {'names': ['text'], 'ndarray': [[52,  4,  0,  2,  8,  4,  2,  0,  0,  0, 60,  9]]}}" \
    http://localhost:80/seldon/default/loanclassifier/api/v0.1/predictions
{
  "meta": {
    "puid": "96cmdkc4k1c6oassvpnpasqbgf",
    "tags": {
    },
    "routing": {
    },
    "requestPath": {
      "model": "loanclassifier:0.1"
    },
    "metrics": []
  },
  "data": {
    "names": ["t:0", "t:1"],
    "ndarray": [[0.86, 0.14]]
  }
}

  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   356  100   264  100    92  11000   3833 --:--:-- --:--:-- --:--:-- 15478

We can also reach it with the Python Client

from seldon_core.seldon_client import SeldonClient

batch = X_test_alibi[:1]

sc = SeldonClient(
    gateway="ambassador", 
    gateway_endpoint="localhost:80",
    deployment_name="loanclassifier",
    payload_type="ndarray",
    namespace="default",
    transport="rest")

client_prediction = sc.predict(data=batch)

print(client_prediction.response)
meta {
  puid: "hv4dnmr8m3ckgrhtnc48rs7mjg"
  requestPath {
    key: "model"
    value: "loanclassifier:0.1"
  }
}
data {
  names: "t:0"
  names: "t:1"
  ndarray {
    values {
      list_value {
        values {
          number_value: 0.86
        }
        values {
          number_value: 0.14
        }
      }
    }
  }
}

Now we can create an explainer for our model

from alibi.explainers import AnchorTabular

predict_fn = lambda x: clf.predict(preprocessor.transform(x))
explainer = AnchorTabular(predict_fn, alibi_feature_names, categorical_names=alibi_category_map)
explainer.fit(X_train_alibi, disc_perc=[25, 50, 75])

explanation = explainer.explain(X_test_alibi[0], threshold=0.95)

print('Anchor: %s' % (' AND '.join(explanation['names'])))
print('Precision: %.2f' % explanation['precision'])
print('Coverage: %.2f' % explanation['coverage'])
Anchor: Marital Status = Separated AND Sex = Female AND Capital Gain <= 0.00
Precision: 0.97
Coverage: 0.10
def predict_remote_fn(X):
    from seldon_core.seldon_client import SeldonClient
    from seldon_core.utils import get_data_from_proto
    
    kwargs = {
        "gateway": "ambassador", 
        "deployment_name": "loanclassifier",
        "payload_type": "ndarray",
        "namespace": "default",
        "transport": "rest"
    }
    
    try:
        kwargs["gateway_endpoint"] = "localhost:80"
        sc = SeldonClient(**kwargs)
        prediction = sc.predict(data=X)
    except:
        # If we are inside the container, we need to reach the ambassador service directly
        kwargs["gateway_endpoint"] = "ambassador:80"
        sc = SeldonClient(**kwargs)
        prediction = sc.predict(data=X)
    
    y = get_data_from_proto(prediction.response)
    return y

But now we can use the remote model we have in production

# Summary of the predict_remote_fn
def predict_remote_fn(X):
    ....
    sc = SeldonClient(...)
    prediction = sc.predict(data=X)
    y = get_data_from_proto(prediction.response)
    return y

And train our explainer to use the remote function

from seldon_core.utils import get_data_from_proto

explainer = AnchorTabular(predict_remote_fn, alibi_feature_names, categorical_names=alibi_category_map)
explainer.fit(X_train_alibi, disc_perc=[25, 50, 75])

explanation = explainer.explain(X_test_alibi[idx], threshold=0.95)

print('Anchor: %s' % (' AND '.join(explanation['names'])))
print('Precision: %.2f' % explanation['precision'])
print('Coverage: %.2f' % explanation['coverage'])
Anchor: Marital Status = Separated AND Sex = Female
Precision: 0.97
Coverage: 0.11

To containerise our explainer, save the trained binary

import dill

with open("pipeline/pipeline_steps/loanclassifier-explainer/explainer.dill", "wb") as x_f:
    dill.dump(explainer, x_f)

Expose it through a wrapper

%%writefile pipeline/pipeline_steps/loanclassifier-explainer/Explainer.py
import dill
import json
import numpy as np

class Explainer:
    def __init__(self, *args, **kwargs):
        
        with open("explainer.dill", "rb") as x_f:
            self.explainer = dill.load(x_f)
        
    def predict(self, X, feature_names=[]):
        print("Received: " + str(X))
        explanation = self.explainer.explain(X)
        print("Predicted: " + str(explanation))
        return json.dumps(explanation, cls=NumpyEncoder)

    
    
    
class NumpyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, (
        np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)):
            return int(obj)
        elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)):
            return float(obj)
        elif isinstance(obj, (np.ndarray,)):
            return obj.tolist()
        return json.JSONEncoder.default(self, obj)

Add config files to build image with script

!s2i build pipeline/pipeline_steps/loanclassifier-explainer seldonio/seldon-core-s2i-python3:0.8 loanclassifier-explainer:0.1
!mkdir -p pipeline/pipeline_steps/loanclassifier-explainer
%%writefile pipeline/pipeline_steps/loanclassifier-explainer/loanclassifiermodel-explainer.yaml
apiVersion: machinelearning.seldon.io/v1alpha2
kind: SeldonDeployment
metadata:
  labels:
    app: seldon
  name: loanclassifier-explainer
spec:
  name: loanclassifier-explainer
  predictors:
  - componentSpecs:
    - spec:
        containers:
        - image: loanclassifier-explainer:0.1
          name: model-explainer
    graph:
      children: []
      name: model-explainer
      type: MODEL
      endpoint:
        type: REST
    name: loanclassifier-explainer
    replicas: 1

Deploy your remote explainer

!kubectl apply -f pipeline/pipeline_steps/loanclassifier-explainer/loanclassifiermodel-explainer.yaml

Now we can request explanations throught the REST API

%%bash
curl -X POST -H 'Content-Type: application/json' \
    -d "{'data': {'names': ['text'], 'ndarray': [[52,  4,  0,  2,  8,  4,  2,  0,  0,  0, 60, 9]] }}" \
    http://localhost:80/seldon/default/loanclassifier-explainer/api/v0.1/predictions
{
  "meta": {
    "puid": "ohbll5bcpu9gg7jjj1unll4155",
    "tags": {
    },
    "routing": {
    },
    "requestPath": {
      "model-explainer": "loanclassifier-explainer:0.1"
    },
    "metrics": []
  },
  "strData": "{\"names\": [\"Marital Status = Separated\", \"Sex = Female\"], \"precision\": 0.9629629629629629, \"coverage\": 0.1078, \"raw\": {\"feature\": [3, 7], \"mean\": [0.9002808988764045, 0.9629629629629629], \"precision\": [0.9002808988764045, 0.9629629629629629], \"coverage\": [0.1821, 0.1078], \"examples\": [{\"covered\": [[46, 4, 4, 2, 2, 1, 4, 1, 0, 0, 45, 9], [24, 4, 1, 2, 6, 3, 2, 1, 0, 0, 40, 9], [39, 4, 4, 2, 4, 1, 4, 1, 4650, 0, 44, 9], [40, 4, 0, 2, 5, 4, 4, 0, 0, 0, 32, 9], [39, 4, 1, 2, 8, 0, 4, 1, 3103, 0, 50, 9], [45, 4, 1, 2, 6, 5, 4, 0, 0, 0, 42, 9], [41, 4, 1, 2, 5, 1, 4, 1, 0, 0, 40, 9], [40, 4, 4, 2, 2, 0, 4, 1, 0, 0, 40, 9], [58, 4, 3, 2, 2, 2, 4, 0, 0, 0, 45, 5], [23, 4, 1, 2, 5, 1, 4, 1, 0, 0, 50, 9]], \"covered_true\": [[33, 4, 4, 2, 2, 0, 4, 1, 0, 0, 40, 9], [70, 0, 4, 2, 0, 0, 4, 1, 0, 0, 10, 9], [66, 0, 4, 2, 0, 0, 4, 1, 0, 0, 30, 9], [37, 1, 1, 2, 8, 2, 4, 0, 0, 0, 50, 9], [32, 4, 5, 2, 6, 5, 4, 0, 0, 0, 45, 9], [24, 4, 4, 2, 7, 1, 4, 1, 0, 0, 40, 9], [46, 7, 6, 2, 5, 1, 4, 0, 0, 1564, 55, 9], [28, 4, 4, 2, 2, 3, 4, 0, 0, 0, 40, 9], [28, 4, 4, 2, 2, 0, 4, 1, 3411, 0, 40, 9], [45, 4, 0, 2, 2, 0, 4, 1, 0, 0, 40, 9]], \"covered_false\": [[51, 4, 6, 2, 5, 1, 4, 0, 0, 2559, 50, 9], [35, 4, 1, 2, 5, 0, 4, 1, 0, 0, 48, 9], [48, 4, 5, 2, 5, 0, 4, 1, 0, 0, 40, 9], [41, 4, 5, 2, 8, 0, 4, 1, 0, 1977, 65, 9], [51, 6, 5, 2, 8, 4, 4, 1, 25236, 0, 50, 9], [46, 4, 4, 2, 2, 0, 4, 1, 0, 0, 75, 9], [52, 6, 1, 2, 1, 5, 4, 0, 99999, 0, 30, 9], [55, 2, 5, 2, 8, 0, 4, 1, 0, 0, 55, 9], [46, 4, 3, 2, 5, 4, 0, 1, 0, 0, 40, 9], [39, 4, 6, 2, 8, 5, 4, 0, 15024, 0, 47, 9]], \"uncovered_true\": [], \"uncovered_false\": []}, {\"covered\": [[52, 4, 4, 2, 1, 4, 4, 0, 0, 1741, 38, 9], [38, 4, 4, 2, 1, 3, 4, 0, 0, 0, 40, 9], [53, 4, 5, 2, 5, 4, 4, 0, 0, 1876, 38, 9], [54, 4, 4, 2, 8, 1, 4, 0, 0, 0, 43, 9], [43, 2, 1, 2, 5, 4, 4, 0, 0, 625, 40, 9], [27, 1, 4, 2, 8, 4, 2, 0, 0, 0, 40, 9], [47, 4, 4, 2, 1, 1, 4, 0, 0, 0, 35, 9], [54, 4, 4, 2, 8, 4, 4, 0, 0, 0, 40, 3], [43, 4, 4, 2, 8, 1, 4, 0, 0, 0, 50, 9], [53, 4, 4, 2, 5, 1, 4, 0, 0, 0, 40, 9]], \"covered_true\": [[54, 4, 4, 2, 8, 4, 4, 0, 0, 0, 40, 3], [41, 4, 4, 2, 1, 4, 4, 0, 0, 0, 40, 9], [58, 4, 4, 2, 1, 1, 4, 0, 0, 0, 40, 9], [36, 4, 4, 2, 6, 1, 4, 0, 3325, 0, 45, 9], [29, 4, 0, 2, 1, 1, 4, 0, 0, 0, 40, 9], [35, 4, 4, 2, 8, 4, 4, 0, 0, 0, 40, 9], [39, 4, 4, 2, 7, 1, 4, 0, 0, 0, 40, 8], [42, 4, 4, 2, 1, 4, 2, 0, 0, 0, 41, 9], [37, 7, 4, 2, 7, 3, 4, 0, 0, 0, 40, 9], [47, 4, 4, 2, 1, 1, 4, 0, 0, 0, 38, 9]], \"covered_false\": [[55, 5, 4, 2, 6, 4, 4, 0, 0, 0, 50, 9], [33, 7, 2, 2, 5, 5, 4, 0, 0, 0, 48, 9], [39, 4, 6, 2, 8, 5, 4, 0, 15024, 0, 47, 9], [48, 4, 5, 2, 8, 4, 4, 0, 0, 0, 40, 9], [41, 4, 1, 2, 5, 1, 4, 0, 0, 0, 50, 9], [42, 1, 5, 2, 8, 1, 4, 0, 14084, 0, 60, 9], [51, 4, 6, 2, 5, 1, 4, 0, 0, 2559, 50, 9], [52, 6, 1, 2, 1, 5, 4, 0, 99999, 0, 30, 9], [39, 7, 2, 2, 5, 1, 4, 0, 0, 0, 40, 9]], \"uncovered_true\": [], \"uncovered_false\": []}], \"all_precision\": 0, \"num_preds\": 1000101, \"names\": [\"Marital Status = Separated\", \"Sex = Female\"], \"instance\": [[52.0, 4.0, 0.0, 2.0, 8.0, 4.0, 2.0, 0.0, 0.0, 0.0, 60.0, 9.0]], \"prediction\": 0}}"
}

  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  3464  100  3372  100    92   3318     90  0:00:01  0:00:01 --:--:--  3409

Now we have an explainer deployed!

Visualise metrics and explanations

Leveraging Humans for Explanations

Revisiting our workflow

Explainability and Bias Evaluation







Alejandro Saucedo


Chief Scientist, The Institute for Ethical AI & Machine Learning Director of ML Engineering, Seldon Technologie Director of ML Engineering, Seldon Technologiess

github.com/ethicalml/explainability-and-bias








More Repositories

1

awesome-production-machine-learning

A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning
17,336
star
2

awesome-artificial-intelligence-guidelines

This repository aims to map the ecosystem of artificial intelligence guidelines, principles, codes of ethics, standards, regulation and beyond.
1,245
star
3

xai

XAI - An eXplainability toolbox for machine learning
Python
1,098
star
4

kafka-spark-streaming-zeppelin-docker

One click deploy docker-compose with Kafka, Spark Streaming, Zeppelin UI and Monitoring (Grafana + Kafka Manager)
120
star
5

fml-security

Practical examples of "Flawed Machine Learning Security" together with ML Security best practice across the end to end stages of the machine learning model lifecycle from training, to packaging, to deployment.
Python
97
star
6

state-of-mlops-2020

JavaScript
60
star
7

ethical

This is the live website of The Institute for Ethical AI & ML, as well as The 8 Principles for Machine Learning.
HTML
47
star
8

sml-security

MLOps Cookiecutter Template: A Base Project Structure for Secure Production ML Engineering
Python
39
star
9

awesome-annual-reviews-and-trends

A curated list of awesome year-in-review and annual trends / predictions for 2022, 2023 and beyond πŸš€
33
star
10

machine-learning-principles-in-slides

JavaScript
12
star
11

reproducible-machine-learning

List of articles that contain best practices about reproducible machine learning
9
star
12

ai-rfx-procurement-framework

7
star
13

ai-risk-and-impact

JavaScript
7
star
14

apc2018-ethical-framework-talk

JavaScript
5
star
15

meditations-on-first-deployment

JavaScript
4
star
16

strategy-2018

JavaScript
4
star
17

ethically-aligned-licenses

3
star
18

iceml2019

HTML
2
star