• Stars
    star
    146
  • Rank 252,769 (Top 5 %)
  • Language
  • License
    MIT License
  • Created about 4 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Extended Physics-Informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition Based Deep Learning Framework for Nonlinear Partial Differential Equations

Extended Physics-Informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition Based Deep Learning Framework for Nonlinear Partial Differential Equations

We propose a generalized space-time domain decomposition approach for the physics-informed neural networks (PINNs) to solve nonlinear partial differential equations (PDEs) on arbitrary complex-geometry domains. The proposed framework, named eXtended PINNs (XPINNs), further pushes the boundaries of both PINNs as well as conservative PINNs (cPINNs), which is a recently proposed domain decomposition approach in the PINN framework tailored to conservation laws. Compared to PINN, the XPINN method has large representation and parallelization capacity due to the inherent property of deployment of multiple neural networks in the smaller subdomains. Unlike cPINN, XPINN can be extended to any type of PDEs. Moreover, the domain can be decomposed in any arbitrary way (in space and time), which is not possible in cPINN. Thus, XPINN offers both space and time parallelization, thereby reducing the training cost more effectively. In each subdomain, a separate neural network is employed with optimally selected hyperparameters, e.g., depth/width of the network, number and location of residual points, activation function, optimization method, etc. A deep network can be employed in a subdomain with complex solution, whereas a shallow neural network can be used in a subdomain with relatively simple and smooth solutions. We demonstrate the versatility of XPINN by solving both forward and inverse PDE problems, ranging from one-dimensional to three-dimensional problems, from time-dependent to time-independent problems, and from continuous to discontinuous problems, which clearly shows that the XPINN method is promising in many practical problems. The proposed XPINN method is the generalization of PINN and cPINN methods, both in terms of applicability as well as domain decomposition approach, which efficiently lends itself to parallelized computation.

If you make use of the code or the idea/algorithm in your work, please cite our papers

References: For Domain Decomposition based PINN framework

  1. A.D.Jagtap, G.E.Karniadakis, Extended Physics-Informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition Based Deep Learning Framework for Nonlinear Partial Differential Equations, Commun. Comput. Phys., Vol.28, No.5, 2002-2041, 2020. (https://doi.org/10.4208/cicp.OA-2020-0164)

    @article{jagtap2020extended,
    title={Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear         partial differential equations},
    author={Jagtap, Ameya D and Karniadakis, George Em},
    journal={Communications in Computational Physics},
    volume={28},
    number={5},
    pages={2002--2041},
    year={2020}
    }
    
  2. A.D.Jagtap, E. Kharazmi, G.E.Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems, Computer Methods in Applied Mechanics and Engineering, 365, 113028 (2020). (https://doi.org/10.1016/j.cma.2020.113028)

    @article{jagtap2020conservative,
    title={Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems},
    author={Jagtap, Ameya D and Kharazmi, Ehsan and Karniadakis, George Em},
    journal={Computer Methods in Applied Mechanics and Engineering},
    volume={365},
    pages={113028},
    year={2020},
    publisher={Elsevier}
    }
    
  3. K. Shukla, A.D. Jagtap, G.E. Karniadakis, Parallel Physics-Informed Neural Networks via Domain Decomposition, Journal of Computational Physics 447, 110683, (2021).

    @article{shukla2021parallel,
    title={Parallel Physics-Informed Neural Networks via Domain Decomposition},
    author={Shukla, Khemraj and Jagtap, Ameya D and Karniadakis, George Em},
    journal={Journal of Computational Physics},
    volume={447},
    pages={110683},
    year={2021},
    publisher={Elsevier}
    }
    

References: For adaptive activation functions

  1. A.D. Jagtap, K.Kawaguchi, G.E.Karniadakis, Adaptive activation functions accelerate convergence in deep and physics-informed neural networks, Journal of Computational Physics, 404 (2020) 109136. (https://doi.org/10.1016/j.jcp.2019.109136)

    @article{jagtap2020adaptive,
    title={Adaptive activation functions accelerate convergence in deep and physics-informed neural networks},
    author={Jagtap, Ameya D and Kawaguchi, Kenji and Karniadakis, George Em},
    journal={Journal of Computational Physics},
    volume={404},
    pages={109136},
    year={2020},
    publisher={Elsevier}
    }
    
  2. A.D.Jagtap, K.Kawaguchi, G.E.Karniadakis, Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 20200334, 2020. (http://dx.doi.org/10.1098/rspa.2020.0334).

    @article{jagtap2020locally,
    title={Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks},
    author={Jagtap, Ameya D and Kawaguchi, Kenji and Em Karniadakis, George},
    journal={Proceedings of the Royal Society A},
    volume={476},
    number={2239},
    pages={20200334},
    year={2020},
    publisher={The Royal Society}
    }
    
  3. A.D. Jagtap, Y. Shin, K. Kawaguchi, G.E. Karniadakis, Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions, Neurocomputing, 468, 165-180, 2022. (https://www.sciencedirect.com/science/article/pii/S0925231221015162)

    @article{jagtap2022deep,
    title={Deep Kronecker neural networks: A general framework for neural networks with adaptive activation functions},
    author={Jagtap, Ameya D and Shin, Yeonjong and Kawaguchi, Kenji and Karniadakis, George Em},
    journal={Neurocomputing},
    volume={468},
    pages={165--180},
    year={2022},
    publisher={Elsevier}
    }
    

Recommended software versions: TensorFlow 1.14, Python 3.6, Latex (for plotting figures)

For any queries regarding the XPINN code, feel free to contact me : [email protected], [email protected]

More Repositories

1

Conservative_PINNs

We propose a conservative physics-informed neural network (cPINN) on decompose domains for nonlinear conservation laws. The conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces.
Python
55
star
2

Locally-Adaptive-Activation-Functions-Neural-Networks-

Python codes for Locally Adaptive Activation Function (LAAF) used in deep neural networks. Please cite this work as "A D Jagtap, K Kawaguchi, G E Karniadakis, Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 20200334, 2020. (http://dx.doi.org/10.1098/rspa.2020.0334)".
Python
38
star
3

XPINNs_TensorFlow-2

XPINN code written in TensorFlow 2
25
star
4

Rowdy_Activation_Functions

We propose Deep Kronecker Neural Network, which is a general framework for neural networks with adaptive activation functions. In particular we proposed Rowdy activation functions that inject sinusoidal fluctuations thereby allows the optimizer to exploit more and train the network faster. Various test cases ranging from function approximation, inferring the PDE solution, and the standard deep learning benchmarks like MNIST, CIFAR-10, CIFAR-100, SVHN etc are solved to show the efficacy of the proposed activation functions.
Python
10
star
5

Adaptive_Activation_Functions

We proposed the simple adaptive activation functions deep neural networks. The proposed method is simple and easy to implement in any neural networks architecture.
9
star
6

Error_estimates_PINN_and_XPINN_NonlinearPDEs

The first comprehensive theoretical analysis of PINNs (and XPINNs) for a prototypical nonlinear PDE, the Navier-Stokes equations are given.
6
star
7

Physics_Informed_Deep_Learning

Short course on physics-informed deep learning
Python
1
star
8

Augmented_PINNs_-APINNs-

1
star
9

Activation-functions-in-regression-and-classification

How important are How important are activation functions in regression and classification? A survey, performance comparison, and future directions
1
star