Keras implementation of ArcFace, CosFace, and SphereFace
This repository contains code for ArcFace, CosFace, and SphereFace based on ArcFace: Additive Angular Margin Loss for Deep Face Recognition implemented in Keras.
Requirements
- Python 3.6
- Keras 2.2.4
Usage
Train
input = Input(shape=(28, 28, 1))
label = Input(shape=(10,))
x = Conv2D(32, kernel_size=(3, 3), activation='relu')(input)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(64, kernel_size=(3, 3), activation='relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)
x = Flatten()(x)
x = Dense(512, kernel_initializer='he_normal')(x)
x = BatchNormalization()(x)
output = ArcFace(num_classes=10)([x, label])
model = Model([input, label], output)
model.compile(loss='categorical_crossentropy',
optimizer=Adam(),
metrics=['accuracy'])
model.fit([x_train, y_train],
y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=([x_test, y_test], y_test),
callbacks=[ModelCheckpoint('model.hdf5',
verbose=1, save_best_only=True)])
Test
model.load_weights('model.hdf5')
model = Model(inputs=model.input[0], outputs=model.layers[-3].output)
embedded_features = model.predict(x_test, verbose=1)
embedded_features /= np.linalg.norm(embedded_features, axis=1, keepdims=True)
Training
MNIST
ArcFace:
python train.py --arch vgg8_arcface
CosFace:
python train.py --arch vgg8_cosface
SphereFace:
python train.py --arch vgg8_sphereface