• Stars
    star
    2,028
  • Rank 22,829 (Top 0.5 %)
  • Language
    Python
  • License
    Other
  • Created over 5 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

🔥 PI-REC: Progressive Image Reconstruction Network With Edge and Color Domain. 🔥 图像翻译,条件GAN,AI绘画

PI-REC

Version Status Platform PyTorch License Evaluation

Progressive Image Reconstruction Network With Edge and Color Domain

Paper on arXiv | Paper Read Online | BibTex


When I was a schoolchild,

I dreamed about becoming a painter.

With PI-REC, we realize our dream.

For you, for everyone.




English | 中文版


🏳️‍🌈 Demo show time 🏳️‍🌈

Draft2Painting

Tool operation



Introduction

We propose a universal image reconstruction method to represent detailed images purely from binary sparse edge and flat color domain. Here is the open source code and the drawing tool. Learn more about related works here --> image-to-image papers collection.

*The codes of training for release are no completed yet, also waiting for release license of lab.

Find more details in our paper: Paper on arXiv

Quick Overview of Paper

What can we do?

  • Figure (a): Image reconstruction from extreme sparse inputs.
  • Figure (b): Hand drawn draft translation.
  • Figure (c): User-defined edge-to-image (E2I) translation.

Model Architecture

We strongly recommend you to understand our model architecture before running our drawing tool. Refer to the paper for more details.

Prerequisites

  • Python 3+
  • PyTorch 1.0 (0.4 is not supported)
  • NVIDIA GPU + CUDA cuDNN

Installation

  • Clone this repo
  • Install PyTorch and dependencies from http://pytorch.org
  • Install python requirements:
pip install -r requirements.txt

Usage

We provide two ways in this project:

  • Basic command line mode for batch test
  • Drawing tool GUI mode for man-machine interactive creation

Firstly, follow steps below with patience to prepare pre-trained models:

  1. Download the pre-trained models you want here: Google Drive | Baidu (Extraction Code: 9qn1)
  2. Unzip the .7z and put it under your dir ./models/.
    So make sure your path now is: ./models/celeba/<xxxxx.pth>
  3. Complete the above Prerequisites and Installation

Files are ready now! Read the User Manual for firing operations.




中文版介绍 🀄

Demo演示

自己看上面的咯~

简介

我们提出了一种基于GAN的渐进式训练方法 PI-REC,它能从超稀疏二值边缘以及色块中还原重建真实图像。 我们的论文重心是在超稀疏信息输入的还原重建上,并非自动绘画。 总之,PI-REC论文/项目属于图像重建,图像翻译,条件图像生成,AI自动绘画的前沿交叉领域的最新产出,而非简单的以图搜图等等。阅读论文中的 Related Work部分或 image-to-image论文整合项目以了解更多。
注意:这里包含了论文代码以及交互式绘画工具。此论文demo仅推荐给不会绘画的人试玩(比如我),或给予相关领域科研人员参考。远远未达到民用或辅助专业人士绘图的程度。

*由于训练过程过于复杂,用于训练的发布版代码还未完成

在我们的论文中你可以获得更多信息: Paper on arXiv (推荐) | 机器之心-中文新闻稿 | b站中文视频教程(有福利?)

论文概览

PI-REC能做啥?

  • Figure (a): 超稀疏输入信息重建原图。
  • Figure (b): 手绘草图转换。
  • Figure (c): 用户自定义的 edge-to-image (E2I) 转换.

模型结构

我们强烈建议你先仔细阅读论文熟悉我们的模型结构,这会对运行使用大有裨益。

基础环境

  • Python 3
  • PyTorch 1.0 (0.4 会报错)
  • NVIDIA GPU + CUDA cuDNN (当前版本已可选cpu,请修改config.yml中的DEVICE

第三方库安装

  • Clone this repo
  • 安装PyTorch和torchvision --> http://pytorch.org
  • 安装 python requirements:
pip install -r requirements.txt

运行使用

我们提供以下两种方式运行:

  • 基础命令行模式 用来批处理测试整个文件夹的图片
  • 绘画GUI工具模式 用来实现交互式创作

首先,请耐心地按照以下步骤做准备:

  1. 在这里下载你想要的预训练模型文件:Google Drive | Baidu (提取码: 9qn1)

更新:2021.4 baidu网盘和谐了我的权重文件,已无法分享,请自行前往Google drive~

  1. 解压,放到目录./models
    现在你的目录应该像这样: ./models/celeba/<xxxxx.pth>
  2. 完成上面的基础环境和第三方库安装

啦啦啦啦,到这里准备工作就完成啦,接下来需要阅读用户手册来运行程序~




Acknowledgment

Code structure is modified from Anime-InPainting, which is based on Edge-Connect.

BibTex

@article{you2019pirec,
  title={PI-REC: Progressive Image Reconstruction Network With Edge and Color Domain},
  author={You, Sheng and You, Ning and Pan, Minxue},
  journal={arXiv preprint arXiv:1903.10146},
  year={2019}
}

More Repositories

1

Anime-InPainting

An application tool of edge-connect, which can do anime inpainting and drawing. 动漫人物图片自动修复,去马赛克,填补,去瑕疵
Python
1,027
star
2

Poems_generator_Keras

唐诗,藏头诗,按需自动生成古诗,基于Keras、LSTM-RNN。文档齐全。
Jupyter Notebook
202
star
3

Mask_Danmu

基于YOLOv2 / Mask-RCNN实现的视频蒙版弹幕,达到bilibili的demo效果。
Python
88
star
4

sepconv_video

基于SpeConv深度学习的视频补帧 插帧
Python
48
star
5

Identify_cat

Logistic Regression with a Neural Network mindset to identify cat photos.
Jupyter Notebook
25
star
6

MVPTest_login

非常简洁的mvp架构教程,关于一个简单的登陆系统,注释写的很详细
Java
21
star
7

Cosine_Stateful_Lstm

有关keras中stateful LSTM模型讲解的配套代码
Jupyter Notebook
18
star
8

YouYuMall

基于MVP架构的完整电商android应用开发(包含通用架构设计)
Java
13
star
9

MaterialTest

印象南京App,mvp+retrofit+rxjava,包含登陆,上传,服务器读取功能
Java
5
star
10

LCY_OnlineJudge

NJU_2018高级算法课程OJ答案
Python
4
star
11

kNN_Practice

kNN (k-邻近算法)实现与实战案例
Python
3
star
12

youyuge34.github.io

个人域名博客 Personal Blog Site used hexo
HTML
3
star
13

ACM_Personal_Training

个人刷的一些算法题,包括PAT甲乙级(牛客网),带数字序号的是九度oj的考研机试题 http://ac.jobdu.com/
JavaScript
3
star
14

VoteSite

一个基本的投票应用。它包含两部分: 一个公开的网站,可以让访客查看投票的结果并让他们进行投票。 一个后台管理网站,你可以添加、修改和删除选票。
Python
2
star
15

logRegres

Logistic回归分类器,最优化理论,梯度下降最优化算法,疝气病预测马匹死亡的实例
Python
2
star
16

DecisionTree

构造ID3算法决策树,用matplotlib绘制决策树
Python
2
star
17

Jobbole_Spider

使用scrapy对伯乐在线,知乎,拉勾网进行爬虫爬取
Python
2
star
18

SVMTest

支持向量机,简化版smo,完整版platt smo函数,核函数,手写识别问题实例,注释充分
Python
1
star
19

bayes

朴素贝叶斯分类器,文本分类
Python
1
star
20

DarkerFlow

在DarkFlow基础上优化后的yolov2目标检测系统
Jupyter Notebook
1
star
21

LinearRegression

Predict the house price from the imooc course with Jupyter,sklearn.
Jupyter Notebook
1
star
22

TensorFlowDocument_Jupyter

Chinese TensorFlow Document with Jupyter and python2.7
Jupyter Notebook
1
star
23

DBJ_Infomation_System

python2+tornado+MySQL 简单的一个订单采购系统,类似购物车,原代码框架@吴凡,本人仅仅修改
HTML
1
star
24

Json2CSV

爬取豆瓣电影短评,并转换为csv格式文件
Jupyter Notebook
1
star
25

MVP_simplestTest

http://www.jianshu.com/p/5c133a8a2b0d 博文对应的最简单的MVP架构,注释写的比较详细
Java
1
star
26

Noir_Art

Share your design work and f**k the life together!
JavaScript
1
star
27

spider_imooc

简单的python2爬虫框架实现,实现简单的调度器、URL池、下载器、解析器、输出模块
HTML
1
star
28

ImoocXianYu

《漫尤——动漫资讯综合App》,注释丰富 特点是封装了视频自动播放(mediaPlayer+textureView)的sdk, 并且在组件封装上下了很大功夫。
Java
1
star