This converter can be useful for porting Caffe code and layers to PyTorch. Features:
- dump caffemodel weights to hdf5, npy, pt and json formats
- load Caffe models and use them from PyTorch
- mock PyCaffe API to allow for smooth porting of Caffe-using code (drop-in script for OICR for changing backend in train/eval to PyTorch is below):
- Net, Blob, SGDSolver
- wrapping Caffe's Python layers (see the OICR example)
- example of ROI pooling in PyTorch without manual CUDA code compilation (see the OICR example)
The layer support isn't as complete as in https://github.com/marvis/pytorch-caffe. Currently it supports the following Caffe layers:
- convolution (num_output, kernel_size, stride, pad, dilation; constant and gaussian weight/bias fillers)
- inner_product (num_output; constant and gaussian weight/bias fillers)
- max / avg pooling (kernel_size, stride, pad)
- relu
- dropout (dropout_ratio)
- eltwise (prod, sum, max)
- softmax (axis)
- local response norm (local_size, alpha, beta)
Dependencies: protobuf with Python bindings, including protoc
binary in PATH
.
PRs to enable other layers or layer params are very welcome (see the definition of the modules
dictionary in the code)!
License is MIT.
Dump weights to PT or HDF5
# prototxt and caffemodel from https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md
# dumps to PT by default to VGG_ILSVRC_16_layers.caffemodel.pt
python -m caffemodel2pytorch VGG_ILSVRC_16_layers.caffemodel
# dumps to HDF5 converted.h5
python -m caffemodel2pytorch VGG_ILSVRC_16_layers.caffemodel -o converted.h5
# load dumped VGG16 in PyTorch
import collections, torch, torchvision, numpy, h5py
model = torchvision.models.vgg16()
model.features = torch.nn.Sequential(collections.OrderedDict(zip(['conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'pool5'], model.features)))
model.classifier = torch.nn.Sequential(collections.OrderedDict(zip(['fc6', 'relu6', 'drop6', 'fc7', 'relu7', 'drop7', 'fc8'], model.classifier)))
state_dict = h5py.File('converted.h5', 'r') # torch.load('VGG_ILSVRC_16_layers.caffemodel.pt')
model.load_state_dict({l : torch.from_numpy(numpy.array(v)).view_as(p) for k, v in state_dict.items() for l, p in model.named_parameters() if k in l})
Run Caffe models using PyTorch as backend
import torch
import caffemodel2pytorch
model = caffemodel2pytorch.Net(
prototxt = 'VGG_ILSVRC_16_layers_deploy.prototxt',
weights = 'VGG_ILSVRC_16_layers.caffemodel',
caffe_proto = 'https://raw.githubusercontent.com/BVLC/caffe/master/src/caffe/proto/caffe.proto'
)
model.cuda()
model.eval()
torch.set_grad_enabled(False)
# make sure to have right procedure of image normalization and channel reordering
image = torch.Tensor(8, 3, 224, 224).cuda()
# outputs dict of PyTorch Variables
# in this example the dict contains the only key "prob"
#output_dict = model(data = image)
# you can remove unneeded layers:
del model.prob
del model.fc8
# a single input variable is interpreted as an input blob named "data"
# in this example the dict contains the only key "fc7"
output_dict = model(image)
Imitate pycaffe interface to help in porting
import numpy as np
import caffemodel2pytorch as caffe
caffe.set_mode_gpu()
caffe.set_device(0)
# === LOADING AND USING THE NET IN EVAL MODE ===
net = caffe.Net('VGG_ILSVRC_16_layers_deploy.prototxt', caffe.TEST, weights = 'VGG_ILSVRC_16_layers.caffemodel')
# outputs a dict of NumPy arrays, data layer is sidestepped
blobs_out = net.forward(data = np.zeros((8, 3, 224, 224), dtype = np.float32))
# access the last layer
layer = net.layers[-1]
# converts and provides the output as NumPy array
numpy_array = net.blobs['conv1_1'].data
# access the loss weights
loss_weights = net.blob_loss_weights
# === BASIC OPTIMIZER ===
# this example uses paths from https://github.com/ppengtang/oicr
# create an SGD solver, loads the net in train mode
# it knows about base_lr, weight_decay, momentum, lr_mult, decay_mult, iter_size, lr policy step, step_size, gamma
# it finds train.prototxt from the solver.prototxt's train_net or net parameters
solver = caffe.SGDSolver('oicr/models/VGG16/solver.prototxt')
# load pretrained weights
solver.net.copy_from('oicr/data/imagenet_models/VGG16.v2.caffemodel')
# runs one iteration of forward, backward, optimization; returns a float loss value
# data layer must be registered or inputs must be provided as keyword arguments
loss = solver.step(1)
Drop-in script for OICR enabling PyTorch as backend for eval and training
Place caffe_pytorch_oicr.py
and caffemodel2pytorch.py
in the root oicr
directory. To use the PyTorch backend in testing and in training, put a line import caffe_pytorch_oicr
at the very top (before import _init_paths
) in tools/test_net.py
and tools/train_net.py
respectively. It requires PyTorch and CuPy (for on-the-fly CUDA kernel compilation).
# caffe_pytorch_oicr.py
import collections
import torch
import torch.nn.functional as F
import cupy
import caffemodel2pytorch
caffemodel2pytorch.initialize('./caffe-oicr/src/caffe/proto/caffe.proto') # needs to be called explicitly for these porting scenarios to enable caffe.proto.caffe_pb2 variable
caffemodel2pytorch.set_mode_gpu()
caffemodel2pytorch.modules['GlobalSumPooling'] = lambda param: lambda pred: pred.sum(dim = 0, keepdim = True)
caffemodel2pytorch.modules['MulticlassCrossEntropyLoss'] = lambda param: lambda pred, labels, eps = 1e-6: F.binary_cross_entropy(pred.clamp(eps, 1 - eps), labels)
caffemodel2pytorch.modules['data'] = lambda param: __import__('roi_data_layer.layer').layer.RoIDataLayer() # wrapping a PyCaffe layer
caffemodel2pytorch.modules['OICRLayer'] = lambda param: OICRLayer # wrapping a PyTorch function
caffemodel2pytorch.modules['WeightedSoftmaxWithLoss'] = lambda param: WeightedSoftmaxWithLoss
caffemodel2pytorch.modules['ReLU'] = lambda param: torch.nn.ReLU(inplace = True) # wrapping a PyTorch module
caffemodel2pytorch.modules['ROIPooling'] = lambda param: lambda input, rois: RoiPooling(param['pooled_h'], param['pooled_w'], param['spatial_scale'])(input, rois) # wrapping a PyTorch autograd function
def WeightedSoftmaxWithLoss(prob, labels_ic, cls_loss_weights, eps = 1e-12):
loss = -cls_loss_weights * F.log_softmax(prob, dim = -1).gather(-1, labels_ic.long().unsqueeze(-1)).squeeze(-1)
valid_sum = cls_loss_weights.gt(eps).float().sum()
return loss.sum() / (loss.numel() if valid_sum == 0 else valid_sum)
def OICRLayer(boxes, cls_prob, im_labels, cfg_TRAIN_FG_THRESH = 0.5):
cls_prob = (cls_prob if cls_prob.size(-1) == im_labels.size(-1) else cls_prob[..., 1:]).clone()
boxes = boxes[..., 1:]
gt_boxes, gt_classes, gt_scores = [], [], []
for i in im_labels.eq(1).nonzero()[:, 1]:
max_index = int(cls_prob[:, i].max(dim = 0)[1])
gt_boxes.append(boxes[max_index])
gt_classes.append(int(i) + 1)
gt_scores.append(float(cls_prob[max_index, i]))
cls_prob[max_index] = 0
max_overlaps, gt_assignment = overlap(boxes, torch.stack(gt_boxes)).max(dim = 1)
return gt_assignment.new(gt_classes)[gt_assignment] * (max_overlaps > cfg_TRAIN_FG_THRESH).type_as(gt_assignment), max_overlaps.new(gt_scores)[gt_assignment]
class RoiPooling(torch.autograd.Function):
CUDA_NUM_THREADS = 1024
GET_BLOCKS = staticmethod(lambda N: (N + RoiPooling.CUDA_NUM_THREADS - 1) // RoiPooling.CUDA_NUM_THREADS)
Stream = collections.namedtuple('Stream', ['ptr'])
kernel_forward = b'''
#define FLT_MAX 340282346638528859811704183484516925440.0f
typedef float Dtype;
#define CUDA_KERNEL_LOOP(i, n) for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); i += blockDim.x * gridDim.x)
extern "C"
__global__ void ROIPoolForward(const int nthreads, const Dtype* bottom_data,
const Dtype spatial_scale, const int channels, const int height,
const int width, const int pooled_height, const int pooled_width,
const Dtype* bottom_rois, Dtype* top_data, int* argmax_data) {
CUDA_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the pooled output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;
bottom_rois += n * 5;
int roi_batch_ind = bottom_rois[0];
int roi_start_w = round(bottom_rois[1] * spatial_scale);
int roi_start_h = round(bottom_rois[2] * spatial_scale);
int roi_end_w = round(bottom_rois[3] * spatial_scale);
int roi_end_h = round(bottom_rois[4] * spatial_scale);
// Force malformed ROIs to be 1x1
int roi_width = max(roi_end_w - roi_start_w + 1, 1);
int roi_height = max(roi_end_h - roi_start_h + 1, 1);
Dtype bin_size_h = static_cast<Dtype>(roi_height)
/ static_cast<Dtype>(pooled_height);
Dtype bin_size_w = static_cast<Dtype>(roi_width)
/ static_cast<Dtype>(pooled_width);
int hstart = static_cast<int>(floor(static_cast<Dtype>(ph)
* bin_size_h));
int wstart = static_cast<int>(floor(static_cast<Dtype>(pw)
* bin_size_w));
int hend = static_cast<int>(ceil(static_cast<Dtype>(ph + 1)
* bin_size_h));
int wend = static_cast<int>(ceil(static_cast<Dtype>(pw + 1)
* bin_size_w));
// Add roi offsets and clip to input boundaries
hstart = min(max(hstart + roi_start_h, 0), height);
hend = min(max(hend + roi_start_h, 0), height);
wstart = min(max(wstart + roi_start_w, 0), width);
wend = min(max(wend + roi_start_w, 0), width);
bool is_empty = (hend <= hstart) || (wend <= wstart);
// Define an empty pooling region to be zero
Dtype maxval = is_empty ? 0 : -FLT_MAX;
// If nothing is pooled, argmax = -1 causes nothing to be backprop'd
int maxidx = -1;
bottom_data += (roi_batch_ind * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int bottom_index = h * width + w;
if (bottom_data[bottom_index] > maxval) {
maxval = bottom_data[bottom_index];
maxidx = bottom_index;
}
}
}
top_data[index] = maxval;
argmax_data[index] = maxidx;
}
}
'''
kernel_backward = b'''
typedef float Dtype;
#define CUDA_KERNEL_LOOP(i, n) for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); i += blockDim.x * gridDim.x)
extern "C"
__global__ void ROIPoolBackward(const int nthreads, const Dtype* top_diff,
const int* argmax_data, const int num_rois, const Dtype spatial_scale,
const int channels, const int height, const int width,
const int pooled_height, const int pooled_width, Dtype* bottom_diff,
const Dtype* bottom_rois) {
CUDA_KERNEL_LOOP(index, nthreads) {
// (n, c, h, w) coords in bottom data
int w = index % width;
int h = (index / width) % height;
int c = (index / width / height) % channels;
int n = index / width / height / channels;
Dtype gradient = 0;
// Accumulate gradient over all ROIs that pooled this element
for (int roi_n = 0; roi_n < num_rois; ++roi_n) {
const Dtype* offset_bottom_rois = bottom_rois + roi_n * 5;
int roi_batch_ind = offset_bottom_rois[0];
// Skip if ROI's batch index doesn't match n
if (n != roi_batch_ind) {
continue;
}
int roi_start_w = round(offset_bottom_rois[1] * spatial_scale);
int roi_start_h = round(offset_bottom_rois[2] * spatial_scale);
int roi_end_w = round(offset_bottom_rois[3] * spatial_scale);
int roi_end_h = round(offset_bottom_rois[4] * spatial_scale);
// Skip if ROI doesn't include (h, w)
const bool in_roi = (w >= roi_start_w && w <= roi_end_w &&
h >= roi_start_h && h <= roi_end_h);
if (!in_roi) {
continue;
}
int offset = (roi_n * channels + c) * pooled_height * pooled_width;
const Dtype* offset_top_diff = top_diff + offset;
const int* offset_argmax_data = argmax_data + offset;
// Compute feasible set of pooled units that could have pooled
// this bottom unit
// Force malformed ROIs to be 1x1
int roi_width = max(roi_end_w - roi_start_w + 1, 1);
int roi_height = max(roi_end_h - roi_start_h + 1, 1);
Dtype bin_size_h = static_cast<Dtype>(roi_height)
/ static_cast<Dtype>(pooled_height);
Dtype bin_size_w = static_cast<Dtype>(roi_width)
/ static_cast<Dtype>(pooled_width);
int phstart = floor(static_cast<Dtype>(h - roi_start_h) / bin_size_h);
int phend = ceil(static_cast<Dtype>(h - roi_start_h + 1) / bin_size_h);
int pwstart = floor(static_cast<Dtype>(w - roi_start_w) / bin_size_w);
int pwend = ceil(static_cast<Dtype>(w - roi_start_w + 1) / bin_size_w);
phstart = min(max(phstart, 0), pooled_height);
phend = min(max(phend, 0), pooled_height);
pwstart = min(max(pwstart, 0), pooled_width);
pwend = min(max(pwend, 0), pooled_width);
for (int ph = phstart; ph < phend; ++ph) {
for (int pw = pwstart; pw < pwend; ++pw) {
if (offset_argmax_data[ph * pooled_width + pw] == (h * width + w)) {
gradient += offset_top_diff[ph * pooled_width + pw];
}
}
}
}
bottom_diff[index] = gradient;
}
}
'''
cupy_init = cupy.array([])
compiled_forward = cupy.cuda.compiler.compile_with_cache(kernel_forward).get_function('ROIPoolForward')
compiled_backward = cupy.cuda.compiler.compile_with_cache(kernel_backward).get_function('ROIPoolBackward')
def __init__(self, pooled_height, pooled_width, spatial_scale):
self.pooled_height = pooled_height
self.pooled_width = pooled_width
self.spatial_scale = spatial_scale
def forward(self, images, rois):
output = torch.cuda.FloatTensor(len(rois), images.size(1) * self.pooled_height * self.pooled_width)
self.argmax = torch.cuda.IntTensor(output.size()).fill_(-1)
self.input_size = images.size()
self.save_for_backward(rois)
RoiPooling.compiled_forward(grid = (RoiPooling.GET_BLOCKS(output.numel()), 1, 1), block = (RoiPooling.CUDA_NUM_THREADS, 1, 1), args=[
output.numel(), images.data_ptr(), cupy.float32(self.spatial_scale), self.input_size[-3], self.input_size[-2], self.input_size[-1],
self.pooled_height, self.pooled_width, rois.data_ptr(), output.data_ptr(), self.argmax.data_ptr()
], stream=RoiPooling.Stream(ptr=torch.cuda.current_stream().cuda_stream))
return output
def backward(self, grad_output):
rois, = self.saved_tensors
grad_input = torch.cuda.FloatTensor(*self.input_size).zero_()
RoiPooling.compiled_backward(grid = (RoiPooling.GET_BLOCKS(grad_input.numel()), 1, 1), block = (RoiPooling.CUDA_NUM_THREADS, 1, 1), args=[
grad_input.numel(), grad_output.data_ptr(), self.argmax.data_ptr(), len(rois), cupy.float32(self.spatial_scale), self.input_size[-3],
self.input_size[-2], self.input_size[-1], self.pooled_height, self.pooled_width, grad_input.data_ptr(), rois.data_ptr()
], stream=RoiPooling.Stream(ptr=torch.cuda.current_stream().cuda_stream))
return grad_input, None
def overlap(box1, box2):
b1, b2 = box1.t().contiguous(), box2.t().contiguous()
xx1 = torch.max(b1[0].unsqueeze(1), b2[0].unsqueeze(0))
yy1 = torch.max(b1[1].unsqueeze(1), b2[1].unsqueeze(0))
xx2 = torch.min(b1[2].unsqueeze(1), b2[2].unsqueeze(0))
yy2 = torch.min(b1[3].unsqueeze(1), b2[3].unsqueeze(0))
inter = area(x1 = xx1, y1 = yy1, x2 = xx2, y2 = yy2)
return inter / (area(b1.t()).unsqueeze(1) + area(b2.t()).unsqueeze(0) - inter)
def area(boxes = None, x1 = None, y1 = None, x2 = None, y2 = None):
return (boxes[..., 3] - boxes[..., 1] + 1) * (boxes[..., 2] - boxes[..., 0] + 1) if boxes is not None else (x2 - x1 + 1).clamp(min = 0) * (y2 - y1 + 1).clamp(min = 0)
Note: I've also had to replace utils/bbox.pyx
by utils/cython_bbox.pyx
and utils/nms.pyx
by utils/cython_nms.pyx
in lib/setup.py
to deal with some setup.py
issues.