• This repository has been archived on 22/May/2019
  • Stars
    star
    2,254
  • Rank 20,014 (Top 0.4 %)
  • Language
    Scala
  • License
    Apache License 2.0
  • Created over 14 years ago
  • Updated over 7 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[Archived] A flexible sharding framework for creating eventually-consistent distributed datastores

STATUS

Twitter is no longer maintaining this project or responding to issues or PRs.

Gizzard: a library for creating distributed datastores

Check out Using gizzard for details on requirements, how to build gizzard, and a demo app.

Also check out the gizzard mailing list.

An introduction to sharding

Many modern web sites need fast access to an amount of information so large that it cannot be efficiently stored on a single computer. A good way to deal with this problem is to “shard” that information; that is, store it across multiple computers instead of on just one.

Sharding strategies often involve two techniques: partitioning and replication. With partitioning, the data is divided into small chunks and stored across many computers. Each of these chunks is small enough that the computer that stores it can efficiently manipulate and query the data. With the other technique of replication, multiple copies of the data are stored across several machines. Since each copy runs on its own machine and can respond to queries, the system can efficiently respond to tons of queries for the same data by adding more copies. Replication also makes the system resilient to failure because if any one copy is broken or corrupt, the system can use another copy for the same task.

The problem is: sharding is difficult. Determining smart partitioning schemes for particular kinds of data requires a lot of thought. And even more difficult is ensuring that all of the copies of the data are consistent despite unreliable communication and occasional computer failures. Recently, a lot of open-source distributed databases have emerged to help solve this problem. Unfortunately, as of the time of writing, most of the available open-source projects are either too immature or too limited to deal with the variety of problems that exist on the web. These new databases are hugely promising but for now it is sometimes more practical to build a custom solution.

What is a sharding framework?

Twitter has built several custom distributed data-stores. Many of these solutions have a lot in common, prompting us to extract the commonalities so that they would be more easily maintainable and reusable. Thus, we have extracted Gizzard, a Scala framework that makes it easy to create custom fault-tolerant, distributed databases.

Gizzard is a framework in that it offers a basic template for solving a certain class of problem. This template is not perfect for everyone’s needs but is useful for a wide variety of data storage problems. At a high level, Gizzard is a middleware networking service that manages partitioning data across arbitrary backend datastores (e.g., SQL databases, Lucene, etc.). The partitioning rules are stored in a forwarding table that maps key ranges to partitions. Each partition manages its own replication through a declarative replication tree. Gizzard supports “migrations” (for example, elastically adding machines to the cluster) and gracefully handles failures. The system is made eventually consistent by requiring that all write-operations are idempotent and commutative and as operations fail (because of, e.g., a network partition) they are retried at a later time.

A very simple sample use of Gizzard is Rowz, a distributed key-value store. To get up-and-running with Gizzard quickly, clone Rowz and start customizing!

But first, let’s examine how Gizzard works in more detail.

How does it work?

Gizzard is middleware

diagram

Gizzard operates as a middleware networking service. It sits “in the middle” between clients (typically, web front-ends like PHP and Ruby on Rails applications) and the many partitions and replicas of data. Sitting in the middle, all data querying and manipulation flow through Gizzard. Gizzard instances are stateless so run as many gizzards as are necessary to sustain throughput or manage TCP connection limits. Gizzard, in part because it is runs on the JVM, is quite efficient. One of Twitter’s Gizzard applications (FlockDB, our distributed graph database) can serve 10,000 queries per second per commodity machine. But your mileage may vary.

Gizzard supports any datastorage backend

Gizzard is designed to replicate data across any network-available data storage service. This could be a relational database, Lucene, Redis, or anything you can imagine. As a general rule, Gizzard requires that all write operations be idempotent and commutative (see the section on Fault Tolerance and Migrations), so this places some constraints on how you may use the back-end store. In particular, Gizzard does not guarantee that write operations are applied in order. It is therefore imperative that the system is designed to reach a consistent state regardless of the order in which writes are applied.

Gizzard handles partitioning through a forwarding table

Gizzard handles partitioning (i.e., dividing exclusive ranges of data across many hosts) by mappings ranges of data to particular shards. These mappings are stored in a forwarding table that specifies lower-bound of a numerical range and what shard that data in that range belongs to.

forwarding table

To be precise, you provide Gizzard a hash function that, given a key for your data (and this key can be application specific), produces a number that belongs to one of the ranges in the forwarding table. These functions are programmable so you can optimize for locality or balance depending on your needs.

This range-based approach differs from the "consistent hashing" technique used in many other distributed data-stores. This allows for heterogeneously sized partitions so that you easily manage hotspots, segments of data that are extremely popular. In fact, Gizzard does allows you to implement completely custom forwarding strategies like consistent hashing, but this isn't the recommended approach. For some more detail on partitioning schemes, read wikipedia:

Gizzard handles replication through a replication tree

Each shard referenced in the forwarding table can be either a physical shard or a logical shard. A physical shard is a reference to a particular data storage back-end, such as a SQL database. In contrast, A logical shard is just a tree of other shards, where each branch in the tree represents some logical transformation on the data, and each node is a data-storage back-end. These logical transformations at the branches are usually rules about how to propagate read and write operations to the children of that branch. For example, here is a two-level replication tree. Note that this represents just ONE partition (as referenced in the forwarding table):

Alt text

The “Replicate” branches in the figure are simple strategies to repeat write operations to all children and to balance reads across the children according to health and a weighting function. You can create custom branching/logical shards for your particular data storage needs, such as to add additional transaction/coordination primitives or quorum strategies. But Gizzard ships with a few standard strategies of broad utility such as Replicating, Write-Only, Read-Only, and Blocked (allowing neither reads nor writes). The utility of some of the more obscure shard types is discussed in the section on Migrations.

The exact nature of the replication topologies can vary per partition. This means you can have a higher replication level for a “hotter” partition and a lower replication level for a “cooler” one. This makes the system highly configurable. For instance, you can specify that the back-ends mirror one another in a primary-secondary-tertiary-etc. configuration for simplicity. Alternatively, for better fault tolerance (but higher complexity) you can “stripe” partitions across machines so that no machine is a mirror of any other.

Gizzard is fault-tolerant

Fault-tolerance is one of the biggest concerns of distributed systems. Because such systems involve many computers, there is some likelihood that one (or many) are malfunctioning at any moment. Gizzard is designed to avoid any single points of failure. If a certain replica in a partition has crashed, Gizzard routes requests to the remaining healthy replicas, bearing in mind the weighting function. If all replicas of in a partition are unavailable, Gizzard will be unable to serve read requests to that shard, but all other shards will be unaffected. Writes to an unavailable shard are buffered until the shard again becomes available.

In fact, if any number of replicas in a shard are unavailable, Gizzard will try to write to all healthy replicas as quickly as possible and buffer the writes to the unavailable shard, to try again later when the unhealthy shard returns to life. The basic strategy is that all writes are materialized to a durable, transactional journal. Writes are then performed asynchronously (but with manageably low latency) to all replicas in a shard. If a shard is unavailable, the write operation goes into an error queue and is retried later.

In order to achieve “eventual consistency”, this “retry later” strategy requires that your write operations are idempotent and commutative. This is because a retry later strategy can apply operations out-of-order (as, for instance, when newer jobs are applied before older failed jobs are retried). In most cases this is an easy requirement. A demonstration of commutative, idempotent writes is given in the Gizzard demo app, Rowz.

Winged migrations

It’s sometimes convenient to copy or move data from shards from one computer to another. You might do this to balance load across more or fewer machines, or to deal with hardware failures. It’s interesting to explain some aspect of how migrations work just to illustrate some of the more obscure logical shard types. When migrating from Datastore A to Datastore A', a Replicating shard is set up between them but a WriteOnly shard is placed in front of Datastore A'. Then data is copied from the old shard to the new shard. The WriteOnly shard ensures that while the new Shard is bootstrapping, no data is read from it (because it has an incomplete picture of the corpus).

Alt text

Because writes will happen out of order (new writes occur before older ones and some writes may happen twice), all writes must be idempotent and commutative to ensure data consistency.

How does Gizzard handle write conflicts?

Write conflicts are when two manipulations to the same record try to change the record in differing ways. Because Gizzard does not guarantee that operations will apply in order, it is important to think about write conflicts when modeling your data. As described elsewhere, write operations must be both idempotent and commutative in order to avoid conflicts. This is actually an easy requirement in many cases, way easier than trying to guarantee ordered delivery of messages with bounded latency and high availability. As mentioned above, Rowz illustrates a technique of using time-stamps to only apply operations that are "newer". More documentation on this will be forthcoming.

Contributors

  • Robey Pointer
  • Nick Kallen
  • Ed Ceaser
  • John Kalucki
  • Matt Freels
  • Kyle Maxwell

More Repositories

1

snowflake

Snowflake is a network service for generating unique ID numbers at high scale with some simple guarantees.
Scala
7,607
star
2

diffy

Find potential bugs in your services with Diffy
Scala
3,829
star
3

flockdb

A distributed, fault-tolerant graph database
Scala
3,334
star
4

kestrel

simple, distributed message queue system (inactive)
Scala
2,777
star
5

twui

A UI framework for Mac based on Core Animation
Objective-C
2,746
star
6

CocoaSPDY

SPDY for iOS and OS X
Objective-C
2,393
star
7

distributedlog

A high performance replicated log service. (The development is moved to Apache Incubator)
Java
2,225
star
8

recess

A simple and attractive code quality tool for CSS built on top of LESS
CSS
2,190
star
9

commons

Twitter common libraries for python and the JVM (deprecated)
Java
2,100
star
10

iago

A load generator, built for engineers
Scala
1,348
star
11

twitter-text-js

A JavaScript implementation of Twitter's text processing library
1,213
star
12

ambrose

A platform for visualization and real-time monitoring of data workflows
Java
1,181
star
13

twitter-kit-android

Twitter Kit for Android
Java
831
star
14

ostrich

A stats collector & reporter for Scala servers (deprecated)
Scala
774
star
15

twitter-kit-ios

Twitter Kit is a native SDK to include Twitter content inside mobile apps.
Objective-C
687
star
16

twitter-text-rb

A library that does auto linking and extraction of usernames, lists and hashtags in tweets
618
star
17

mysos

Cotton (formerly known as Mysos)
592
star
18

twitter-text-objc

An Objective-C implementation of Twitter's text processing library
588
star
19

torch-autograd

Autograd automatically differentiates native Torch code
Lua
556
star
20

ospriet

An example audience moderation app built on Twitter
JavaScript
408
star
21

cloudhopper-smpp

Efficient, scalable, and flexible Java implementation of the Short Messaging Peer to Peer Protocol (SMPP)
Java
382
star
22

twitter-text-java

A Java implementation of Twitter's text processing library
364
star
23

jvmgcprof

A simple utility for profile allocation and garbage collection activity in the JVM
C
341
star
24

css-flip

A CSS BiDi flipper
JavaScript
313
star
25

clockworkraven

Human-Powered Data Analysis with Mechanical Turk
Ruby
300
star
26

torch-twrl

Torch-twrl is a package that enables reinforcement learning in Torch.
Lua
251
star
27

cassie

A Scala client for Cassandra
Scala
243
star
28

twemperf

A tool for measuring memcached server performance
C
242
star
29

hdfs-du

Visualize your HDFS cluster usage
JavaScript
230
star
30

pycascading

A Python wrapper for Cascading
Python
223
star
31

RTLtextarea

Automatically detects RTL and configures a text input
JavaScript
169
star
32

haplocheirus

A Redis-backed storage engine for timelines
Scala
133
star
33

standard-project

A slightly more standard sbt project plugin library
Scala
132
star
34

torch-decisiontree

This project implements random forests and gradient boosted decision trees (GBDT). The latter uses gradient tree boosting. Both use ensemble learning to produce ensembles of decision trees (that is, forests).
Lua
126
star
35

elephant-twin

Elephant Twin is a framework for creating indexes in Hadoop
Java
96
star
36

torch-ipc

A set of primitives for parallel computation in Torch
C
95
star
37

torch-distlearn

A set of distributed learning algorithms for Torch
Lua
94
star
38

libcrunch

A lightweight mapping framework that maps data objects to a number of nodes, subject to constraints
Java
90
star
39

scribe

A Ruby client library for Scribe
Ruby
90
star
40

sbt-package-dist

sbt 11 plugin codifying best practices for building, packaging, and publishing
Scala
88
star
41

twisitor

A simple and spectacular photo-tweeting birdhouse
JavaScript
84
star
42

flockdb-client

A Ruby client library for FlockDB
Ruby
83
star
43

code-of-conduct

Open Source Code of Conduct at Twitter
81
star
44

twitter-text-conformance

Conformance testing data for the twitter-text-* repositories
77
star
45

torch-dataset

An extensible and high performance method of reading, sampling and processing data for Torch
Lua
76
star
46

cdk

CDK is a tool to quickly generate single-file html slide presentations from AsciiDoc
CSS
74
star
47

naggati2

Protocol builder for netty using scala (DEPRECATED)
Scala
74
star
48

twitter-kit-unity

Twitter Kit for Unity
C#
71
star
49

plumage.js

Batteries Included App Framework for Data Intensive UIs
JavaScript
66
star
50

gozer

Prototype mesos framework using new low-level API built in Go
Go
61
star
51

bookkeeper

Twitter's fork of Apache BookKeeper (will push changes upstream eventually)
Java
59
star
52

grabby-hands

A JVM Kestrel client that aggregates queues from multiple servers. Implemented in Scala with Java bindings. In use at Twitter for all JVM Search and Streaming Kestrel interactions.
Scala
56
star
53

gizzmo

A command-line client for Gizzard
Ruby
54
star
54

thrift

Twitter's out-of-date, forked thrift
C++
53
star
55

libkestrel

libkestrel
Scala
47
star
56

time_constants

Time constants, in seconds, so you don't have to use slow ActiveSupport helpers
Ruby
47
star
57

sbt-scrooge

An SBT plugin that adds a mixin for doing Thrift code auto-generation during your compile phase
Scala
44
star
58

cli-guide.js

CLI Guide JQuery Plugin
JavaScript
41
star
59

sbt-thrift

sbt rules for generating source stubs out of thrift IDLs, for java & scala
Ruby
38
star
60

jaqen

A type-safe heterogenous Map or a Named field Tuple
Scala
35
star
61

spitball

A very simple gem package generation tool built on bundler
Ruby
33
star
62

torch-thrift

A Thrift codec for Torch
C
29
star
63

jsr166e

JSR166e for Twitter
Java
27
star
64

unishark

Unishark: Another unittest extension for Python
Python
26
star
65

raggiana

A simple standalone Finagle stats viewer
JavaScript
21
star
66

sekhmet

foundational tools and building blocks for gaining insights and diagnosing system health in real-time
20
star
67

periscope-live-engagement-unity-sdk

Periscope Live Engagement Unity SDK
C#
20
star
68

twitterActors

Improved Scala actors library; used internally at Twitter
Scala
19
star
69

finatra-activator-http-seed

Typesafe activator template for constructing a Finatra HTTP server application:
Scala
18
star
70

killdeer

Killdeer is a simple server for replaying a sample of responses to sythentically recreate production response characteristics.
Scala
16
star
71

elephant-twin-lzo

Elephant Twin LZO uses Elephant Twin to create LZO block indexes
Java
15
star
72

bittern

Bittern Cache uses nvdimm to speed up block io operations
C
14
star
73

finatra-activator-thrift-seed

Typesafe activator template for constructing a Finatra Thrift server application: https://twitter.github.io/finatra/user-guide/ —
Scala
11
star
74

chainsaw

A thin Scala wrapper for SLF4J
Scala
10
star
75

PerfTracepoint

Perf tracepoint support for the JVM
Java
7
star
76

oscon-puzzles

OSCON 2014 Puzzle
JavaScript
7
star
77

scala-json

JSON in Scala (deprecated)
Scala
5
star
78

scala-csp-config

A Scala library for configuring Content Security Policy headers for HTTP responses.
Scala
4
star
79

.github

3
star
80

finatra-misc

Miscellaneous libraries and utils used by Finatra
Scala
3
star
81

autolog-clustering

USF Capstone Project for Auto-log Clustering
Python
1
star