• Stars
    star
    613
  • Rank 73,175 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created about 5 years ago
  • Updated 6 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Hierarchical perception library in Python for pose estimation, object detection, instance segmentation, keypoint estimation, face recognition, etc.

(PAZ) Perception for Autonomous Systems

Unit testing PyPI upload Publish Website Downloads

Hierarchical perception library in Python.

Selected examples:

PAZ is used in the following examples (links to real-time demos and training scripts):

Probabilistic 2D keypoints 6D head-pose estimation Object detection
Emotion classifier 2D keypoint estimation Mask-RCNN (in-progress)
Semantic segmentation Hand pose estimation 2D Human pose estimation
3D keypoint discovery Hand closure detection 6D pose estimation
Implicit orientation Attention (STNs) Haar Cascade detector
Eigenfaces Prototypical Networks 3D Human pose estimation

All models can be re-trained with your own data (except for Mask-RCNN, we are working on it here).

Table of Contents

Installation

PAZ has only three dependencies: Tensorflow2.0, OpenCV and NumPy.

To install PAZ with pypi run:

pip install pypaz --user

Documentation

Full documentation can be found https://oarriaga.github.io/paz/.

Hierarchical APIs

PAZ can be used with three different API levels which are there to be helpful for the user's specific application.

High-level

Easy out-of-the-box prediction. For example, for detecting objects we can call the following pipeline:

from paz.applications import SSD512COCO

detect = SSD512COCO()

# apply directly to an image (numpy-array)
inferences = detect(image)

There are multiple high-level functions a.k.a. pipelines already implemented in PAZ here. Those functions are build using our mid-level API described now below.

Mid-level

While the high-level API is useful for quick applications, it might not be flexible enough for your specific purpose. Therefore, in PAZ we can build high-level functions using our a mid-level API.

Mid-level: Sequential

If your function is sequential you can construct a sequential function using SequentialProcessor. In the example below we create a data-augmentation pipeline:

from paz.abstract import SequentialProcessor
from paz import processors as pr

augment = SequentialProcessor()
augment.add(pr.RandomContrast())
augment.add(pr.RandomBrightness())
augment.add(pr.RandomSaturation())
augment.add(pr.RandomHue())

# you can now use this now as a normal function
image = augment(image)

You can also add any function not only those found in processors. For example we can pass a numpy function to our original data-augmentation pipeline:

augment.add(np.mean)

There are multiple functions a.k.a. Processors already implemented in PAZ here.

Using these processors we can build more complex pipelines e.g. data augmentation for object detection: pr.AugmentDetection

Mid-level: Explicit

Non-sequential pipelines can be also build by abstracting Processor. In the example below we build a emotion classifier from scratch using our high-level and mid-level functions.

from paz.applications import HaarCascadeFrontalFace, MiniXceptionFER
import paz.processors as pr

class EmotionDetector(pr.Processor):
    def __init__(self):
        super(EmotionDetector, self).__init__()
        self.detect = HaarCascadeFrontalFace(draw=False)
        self.crop = pr.CropBoxes2D()
        self.classify = MiniXceptionFER()
        self.draw = pr.DrawBoxes2D(self.classify.class_names)

    def call(self, image):
        boxes2D = self.detect(image)['boxes2D']
        cropped_images = self.crop(image, boxes2D)
        for cropped_image, box2D in zip(cropped_images, boxes2D):
            box2D.class_name = self.classify(cropped_image)['class_name']
        return self.draw(image, boxes2D)
        
detect = EmotionDetector()
# you can now apply it to an image (numpy array)
predictions = detect(image)

Processors allow us to easily compose, compress and extract away parameters of functions. However, most processors are build using our low-level API (backend) shown next.

Low-level

Mid-level processors are mostly built from small backend functions found in: boxes, cameras, images, keypoints and quaternions.

These functions can found in paz.backend:

from paz.backend import boxes, camera, image, keypoints, quaternion

For example, you can use them in your scripts to load or show images:

from paz.backend.image import load_image, show_image

image = load_image('my_image.png')
show_image(image)

Additional functionality

Models

The following models are implemented in PAZ and they can be trained with your own data:

Task (link to implementation) Model (link to paper)
Object detection SSD-300
Object detection SSD-512
Probabilistic keypoint est. Gaussian Mixture CNN
Detection and Segmentation MaskRCNN (in progress)
Keypoint estimation HRNet
Semantic segmentation U-NET
6D Pose estimation Pix2Pose
Implicit orientation AutoEncoder
Emotion classification MiniXception
Discovery of Keypoints KeypointNet
Keypoint estimation KeypointNet2D
Attention Spatial Transformers
Object detection HaarCascades
2D Human pose estimation HigherHRNet
3D Human pose estimation Simple Baseline
Hand pose estimation DetNet
Hand closure classification IKNet
Hand detection SSD512
Few-shot classification Prototypical Networks

Motivation

Even though there are multiple high-level computer vision libraries in different deep learning frameworks, I felt there was not a consolidated deep learning library for robot-perception in my framework of choice (Keras).

As a final remark, I would like to mention, that I feel that we might tend to forget the great effort and emotional status behind every (open-source) project. I feel it's easy to blurry a company name with the individuals behind their work, and we forget that there is someone feeling our criticism and our praise. Therefore, whatever good code you can find here, is all dedicated to the software-engineers and contributors of open-source projects like Pytorch, Tensorflow and Keras. You put your craft out there for all of us to use and appreciate, and we ought first to give you our thankful consideration.

Why the name PAZ?

  • The name PAZ satisfies it's theoretical definition by having it as an acronym for Perception for Autonomous Systems where the letter S is replaced for Z in order to indicate that for "System" we mean almost anything i.e. Z being a classical algebraic variable to indicate an unknown element.

Tests and coverage

Continuous integration is managed trough github actions using pytest. You can then check for the tests by running:

pytest tests

Test coverage can be checked using coverage. You can install coverage by calling: pip install coverage --user You can then check for the test coverage by running:

coverage run -m pytest tests/
coverage report -m

Citation

If you use PAZ please consider citating it. You can also find our paper here https://arxiv.org/abs/2010.14541.

@misc{arriaga2020perception,
      title={Perception for Autonomous Systems (PAZ)}, 
      author={Octavio Arriaga and Matias Valdenegro-Toro and Mohandass Muthuraja and Sushma Devaramani and Frank Kirchner},
      year={2020},
      eprint={2010.14541},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Funding

PAZ is currently developed in the Robotics Group of the University of Bremen, together with the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) in Bremen. PAZ has been funded by the German Federal Ministry for Economic Affairs and Energy and the German Aerospace Center (DLR). PAZ been used and/or developed in the projects TransFIT and KiMMI-SF.

More Repositories

1

face_classification

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.
Python
5,579
star
2

STN.keras

Implementation of spatial transformer networks (STNs) in keras 2 with tensorflow as backend.
Jupyter Notebook
278
star
3

neural_image_captioning

Neural image captioning (NIC) implementation with Keras 2.
Jupyter Notebook
176
star
4

SSD-keras

SSD: Single Shot MultiBox Detector in keras.
Python
84
star
5

RBF-Network

Minimal implementation of a radial basis function network.
Jupyter Notebook
73
star
6

beauvoir

Domain randomization library in Python for object detection and classification using Blender.
Python
15
star
7

luvina

High-level Natural Language Processing (NLP) for Python.
Python
13
star
8

bayesian-inverse-graphics

Bayesian Inverse Graphics for Few-Shot Concept Learning
Python
8
star
9

tfp-workshop

Tensorflow probability workshop
Dockerfile
4
star
10

PyGPToolbox

PyGPToolbox - A python geometry processing toolbox
Python
3
star
11

altamira-data

Altamira's external data such as model weights and image-pose dictionaries.
3
star
12

self-organizing-map

Small numpy implementation of self-organizing maps (SOMs).
Jupyter Notebook
2
star
13

ROS_face_classification

Python
1
star
14

pathnet.keras

Implementation of "PathNet: Evolution Channels Gradient Descent in Super Neural Networks" in keras 2.
Python
1
star
15

cnn_benchmarks

CNN benchmarks for Keras models
Python
1
star
16

object_perception

Object perception tasks: detection, tracking and classification.
Python
1
star
17

neras

keras with numpy
Python
1
star
18

image_affine_transformer

A class to apply affine transformations to a batch of images using bilinear interpolation.
Jupyter Notebook
1
star
19

IDE_vim

Integrated development environment (IDE) in vim.
Vim Script
1
star