• Stars
    star
    240
  • Rank 168,229 (Top 4 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 3 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Accepted to ICCV 2021 !!

Rethinking Spatial Dimensions of Vision Transformers

Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper

NAVER AI LAB

teaser

News

  • Mar 30, 2021: Code & paper released
  • Apr 2, 2021: PiT models with pretrained weights are added to timm repo. You can directly use PiT models with timm>=0.4.7.
  • Jul 23, 2021: Accepted to ICCV 2021 as a poster session

Abstract

Vision Transformer (ViT) extends the application range of transformers from language processing to computer vision tasks as being an alternative architecture against the existing convolutional neural networks (CNN). Since the transformer-based architecture has been innovative for computer vision modeling, the design convention towards an effective architecture has been less studied yet. From the successful design principles of CNN, we investigate the role of the spatial dimension conversion and its effectiveness on the transformer-based architecture. We particularly attend the dimension reduction principle of CNNs; as the depth increases, a conventional CNN increases channel dimension and decreases spatial dimensions. We empirically show that such a spatial dimension reduction is beneficial to a transformer architecture as well, and propose a novel Pooling-based Vision Transformer (PiT) upon the original ViT model. We show that PiT achieves the improved model capability and generalization performance against ViT. Throughout the extensive experiments, we further show PiT outperforms the baseline on several tasks such as image classification, object detection and robustness evaluation.

Model performance

We compared performance of PiT with DeiT models in various training settings. Throughput (imgs/sec) values are measured in a machine with single V100 gpu with 128 batche size.

Network FLOPs # params imgs/sec Vanilla +CutMix +DeiT +Distill
DeiT-Ti 1.3 G 5.7 M 2564 68.7 68.5 72.2 74.5
PiT-Ti 0.71 G 4.9 M 3030 71.3 72.6 73.0 74.6
PiT-XS 1.4 G 10.6 M 2128 72.4 76.8 78.1 79.1
DeiT-S 4.6 G 22.1 M 980 68.7 76.5 79.8 81.2
PiT-S 2.9 G 23.5 M 1266 73.3 79.0 80.9 81.9
DeiT-B 17.6 G 86.6 M 303 69.3 75.3 81.8 83.4
PiT-B 12.5 G 73.8 M 348 76.1 79.9 82.0 84.0

Use PiT models with timm repo

Install timm>=0.4.7 using:

pip install git+https://github.com/rwightman/pytorch-image-models.git

Create PiT models

import torch
import timm

model = timm.create_model('pit_s_224', pretrained=True)
print(model(torch.randn(1, 3, 224, 224)))

Pretrained weights

Model name FLOPs accuracy weights
pit_ti 0.71 G 73.0 link
pit_xs 1.4 G 78.1 link
pit_s 2.9 G 80.9 link
pit_b 12.5 G 82.0 link
pit_ti_distilled 0.71 G 74.6 link
pit_xs_distilled 1.4 G 79.1 link
pit_s_distilled 2.9 G 81.9 link
pit_b_distilled 12.5 G 84.0 link

Dependancies

Our implementations are tested on following libraries with Python 3.6.9 and CUDA 10.1.

torch: 1.7.1
torchvision: 0.8.2
timm: 0.3.4
einops: 0.3.0

Install other dependencies using the following command.

pip install -r requirements.txt

How to use models

You can build PiT models directly

import torch
import pit

model = pit.pit_s(pretrained=False)
model.load_state_dict(torch.load('./weights/pit_s_809.pth'))
print(model(torch.randn(1, 3, 224, 224)))

Or using timm function

import torch
import timm
import pit

model = timm.create_model('pit_s', pretrained=False)
model.load_state_dict(torch.load('./weights/pit_s_809.pth'))
print(model(torch.randn(1, 3, 224, 224)))

To use models trained with distillation, you should use _distilled model and weights.

import torch
import pit

model = pit.pit_s_distilled(pretrained=False)
model.load_state_dict(torch.load('./weights/pit_s_distill_819.pth'))
print(model(torch.randn(1, 3, 224, 224)))

License

Copyright 2021-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Citation

@inproceedings{heo2021pit,
    title={Rethinking Spatial Dimensions of Vision Transformers},
    author={Byeongho Heo and Sangdoo Yun and Dongyoon Han and Sanghyuk Chun and Junsuk Choe and Seong Joon Oh},
    booktitle = {International Conference on Computer Vision (ICCV)},
    year={2021},
}

More Repositories

1

DenseDiffusion

Official Pytorch Implementation of DenseDiffusion (ICCV 2023)
Jupyter Notebook
466
star
2

StyleMapGAN

Official pytorch implementation of StyleMapGAN (CVPR 2021)
Python
458
star
3

Visual-Style-Prompting

Official Pytorch implementation of "Visual Style Prompting with Swapping Self-Attention"
Python
415
star
4

relabel_imagenet

Python
395
star
5

vidt

Python
305
star
6

korean-safety-benchmarks

Official datasets and pytorch implementation repository of SQuARe and KoSBi (ACL 2023)
Python
233
star
7

BlendNeRF

Official pytorch implementation of BlendNeRF (ICCV 2023)
Python
149
star
8

c3-gan

Official Pytorch implementation of C3-GAN (Spotlight at ICLR 2022)
Python
125
star
9

rope-vit

[ECCV 2024] Official PyTorch implementation of RoPE-ViT "Rotary Position Embedding for Vision Transformer"
Python
124
star
10

pcme

Official Pytorch implementation of "Probabilistic Cross-Modal Embedding" (CVPR 2021)
Python
121
star
11

GGDR

Official Pytorch implementation of GGDR (ECCV 2022)
Python
102
star
12

cl-vs-mim

(ICLR 2023) Official PyTorch implementation of "What Do Self-Supervised Vision Transformers Learn?"
Jupyter Notebook
97
star
13

calm

Python
91
star
14

PfLayer

Learning Features with Parameter-Free Layers, ICLR 2022
Python
85
star
15

rdnet

[ECCV2024] Official implementation of paper, "DenseNets Reloaded: Paradigm Shift Beyond ResNets and ViTs".
Python
84
star
16

w-ood

Python
80
star
17

model-stock

Model Stock: All we need is just a few fine-tuned models
72
star
18

egtr

[CVPR 2024 Best paper award candidate] EGTR: Extracting Graph from Transformer for Scene Graph Generation
Python
65
star
19

hypermix

Code for text augmentation method leveraging large-scale language models
Python
60
star
20

carecall-corpus

CareCall for Seniors: Role Specified Open-Domain Dialogue dataset generated by leveraging LLMs (NAACL 2022).
59
star
21

eccv-caption

Extended COCO Validation (ECCV) Caption dataset (ECCV 2022)
Python
52
star
22

i-Blurry

Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)
Python
52
star
23

seit

[ECCV2024][ICCV2023] Official PyTorch implementation of SeiT++ and SeiT
Python
51
star
24

FSMR

Official Tensorflow implementation of "Feature Statistics Mixing Regularization for Generative Adversarial Networks" (CVPR 2022)
Python
49
star
25

pcmepp

Official Pytorch implementation of "Improved Probabilistic Image-Text Representations" (ICLR 2024)
Python
48
star
26

cmo

Python
45
star
27

facetts

Python
44
star
28

cream

Visually-Situated Natural Language Understanding with Contrastive Reading Model and Frozen Large Language Models, EMNLP 2023
Python
42
star
29

dap-cl

Official code of "Generating Instance-level Prompts for Rehearsal-free Continual Learning (ICCV 2023)"
Python
39
star
30

NeglectedFreeLunch

Jupyter Notebook
36
star
31

neuralwoz

NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)
Python
36
star
32

dual-teacher

Official code for the NeurIPS 2023 paper "Switching Temporary Teachers for Semi-Supervised Semantic Segmentation"
Python
35
star
33

augsub

Official PyTorch implementation of MaskSub "Masking Augmentation for Supervised Learning"
Python
32
star
34

chacha-chatbot

Python
31
star
35

tablevqabench

Jupyter Notebook
30
star
36

carecall-memory

Keep Me Updated! Memory Management in Long-term Conversations (Findings of EMNLP 2022)
28
star
37

mid.metric

Python
27
star
38

MetricMT

The official code repository for MetricMT - a reward optimization method for NMT with learned metrics
25
star
39

scob

Official Implementation of SCOB [ICCV 2023]
Python
22
star
40

ALMoST

Python
22
star
41

coco-annotation-tool

TypeScript
21
star
42

hmix-gmix

Jupyter Notebook
21
star
43

imagenet-annotation-tool

TypeScript
17
star
44

informer

17
star
45

cs-shortcut

Saving Dense Retriever from Shortcut Dependency in Conversational Search (EMNLP 2022)
Python
16
star
46

talebrush

The official source code for TaleBrush (CHI 2022)
Python
14
star
47

cgl_fairness

Python
14
star
48

KoBBQ

Official code and dataset repository of KoBBQ (TACL 2024)
Python
14
star
49

trace

TRACE: Table Reconstruction Aligned to Corner and Edges (ICDAR 2023)
Python
12
star
50

simseek

Generating Information-Seeking Conversations from Unlabeled Documents (EMNLP 2022).
Python
11
star
51

tc-clip

[ECCV 2024] Official PyTorch implementation of TC-CLIP "Leveraging Temporal Contextualization for Video Action Recognition"
Python
10
star
52

burn

Official Pytorch Implementation of Unsupervised Representation Learning for Binary Networks by Joint Classifier Training (CVPR 2022)
Python
10
star
53

tokenadapt

Python
8
star
54

llm-chatbot

The LLM chatbot demo website
HTML
7
star
55

lut

[ECCV 2024] Official PyTorch implementation of LUT "Learning with Unmasked Tokens Drives Stronger Vision Learners"
5
star
56

elva

On Efficient Language and Vision Assistants for Visually-Situated Natural Language Understanding: What Matters in Reading and Reasoning
5
star
57

rewas

5
star
58

densediffusion

5
star
59

rite

Python
5
star
60

demystifying-ntk

Demystifying the Neural Tangent Kernel from a Practical Perspective: Can it be trusted for Neural Architecture Search without training? (CVPR 2022)
Python
2
star
61

carte

CARTE: Cell Adjacency Relation for Table Evaluation
Python
2
star
62

chacha

TypeScript
1
star