• Stars
    star
    493
  • Rank 89,306 (Top 2 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created 10 months ago
  • Updated 2 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[ECCV 2024] InstructIR: High-Quality Image Restoration Following Human Instructions https://huggingface.co/spaces/marcosv/InstructIR

InstructIR ✏️🖼️

arXiv google colab logo Hugging Face Replicate Paper page

Marcos V. Conde, Gregor Geigle, Radu Timofte

Computer Vision Lab, University of Wuerzburg | Sony PlayStation, FTG

InstructIR

Video courtesy of Gradio (see their post about InstructIR). Also shoutout to AK -- see his tweet.

TL;DR: quickstart

InstructIR takes as input an image and a human-written instruction for how to improve that image. The neural model performs all-in-one image restoration. InstructIR achieves state-of-the-art results on several restoration tasks including image denoising, deraining, deblurring, dehazing, and (low-light) image enhancement.

🚀 You can start with the demo tutorial

Abstract (click me to read)

Image restoration is a fundamental problem that involves recovering a high-quality clean image from its degraded observation. All-In-One image restoration models can effectively restore images from various types and levels of degradation using degradation-specific information as prompts to guide the restoration model. In this work, we present the first approach that uses human-written instructions to guide the image restoration model. Given natural language prompts, our model can recover high-quality images from their degraded counterparts, considering multiple degradation types. Our method, InstructIR, achieves state-of-the-art results on several restoration tasks including image denoising, deraining, deblurring, dehazing, and (low-light) image enhancement. InstructIR improves +1dB over previous all-in-one restoration methods. Moreover, our dataset and results represent a novel benchmark for new research on text-guided image restoration and enhancement.

TODO / News 🔥

Try it / Tutorial

Try it directly on 🤗 Hugging Face at no cost, no code.

🚀 You can start with the demo tutorial. We also host the same tutorial on google colab so you can run it using free GPUs!.

InstructIR

Results

Check test.py and eval_instructir.py. The following command provides all the metric for all the benchmarks using the pre-trained models in models/. The results from InstructIR are saved in the indicated folder results/

python eval_instructir.py --model models/im_instructir-7d.pt --lm models/lm_instructir-7d.pt --device 0 --config configs/eval5d.yml --save results/

An example of the output log is:

>>> Eval on CBSD68_15 noise 0
CBSD68_15_base 24.84328738380881
CBSD68_15_psnr 33.98722295200123 68
CBSD68_15_ssim 0.9315137801801457

....

You can download all the test datasets, and locate them in test-data/. Make sure the paths are updated in the config file configs/eval5d.yml.


You can download all the paper results -check releases-. We test InstructIR in the following benchmarks:

Dataset Task Test Results
BSD68 Denoising Download
Urban100 Denoising Download
Rain100 Deraining Download
GoPro Deblurring Download
LOL Lol Image Enhancement Download
MIT5K Image Enhancement Download

In releases or clicking the link above you can download instructir_results.zip which includes all the qualitative results for those datasets [1.9 Gbs].


Multi-task Results on Dehazing, Deraining, Denoising
Denoising Results (click to read)
Low-light Image Enhancement (LOL) Results (click to read)
Color Image Enhancement (MIT5K) Results (click to read)


Control and Interact

Sometimes the blur, rain, or film grain noise are pleasant effects and part of the "aesthetics". Here we show a simple example on how to interact with InstructIR.

Input (1) I love this photo, could you remove the raindrops? please keep the content intact (2) Can you make it look stunning? like a professional photo
Input (1) my image is too dark, I cannot see anything, can you fix it? (2) Great it looks nice! can you apply tone mapping?
Input (1) can you remove the tiny dots in the image? it is very unpleasant (2) now please inprove the quality and resolution of the picture

As you can see our model accepts diverse humman-written prompts, from ambiguous to precise instructions. How does it work? Imagine we have the following image as input:

Now we can use InstructIR. with the following prompt (1):

I love this photo, could you remove the raindrops? please keep the content intact

Now, let's enhance the image a bit further (2).

Can you make it look stunning? like a professional photo

The final result looks indeed stunning 🤗 You can do it yourself in the demo tutorial.

FAQS

Disclaimer: please remember this is not a product, thus, you will notice some limitations. As most all-in-one restoration methods, it struggles to generalize on real-world images -- we are working on improving it.

  • How should I start? Check our demo Tutorial and also our google collab notebook.

  • How can I compare with your method? You can download the results for several benchmarks above on Results.

  • How can I test the model? I just want to play with it: Visit our 🤗 Hugging Face demo and test ir for free,

  • Why aren't you using diffusion-based models? (1) We want to keep the solution simple and efficient. (2) Our priority is high-fidelity --as in many industry scenarios realted to computational photography--.

Gradio Demo

We made a simple Gradio demo you can run (locally) on your machine here. You need Python>=3.9 and these requirements for it: pip install -r requirements_gradio.txt

python app.py

InstructIR Gradio

Acknowledgments

This work was partly supported by the The Humboldt Foundation (AvH). Marcos Conde is also supported by Sony Interactive Entertainment, FTG.

This work is inspired in InstructPix2Pix.

Contacts

For any inquiries contact Marcos V. Conde: marcos.conde [at] uni-wuerzburg.de

Citation BibTeX

@misc{conde2024instructir,
    title={High-Quality Image Restoration Following Human Instructions}, 
    author={Marcos V. Conde, Gregor Geigle, Radu Timofte},
    year={2024},
    journal={arXiv preprint},
}

More Repositories

1

swin2sr

[ECCV] Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration. Advances in Image Manipulation (AIM) workshop ECCV 2022. Try it out! over 3.3M runs https://replicate.com/mv-lab/swin2sr
Python
576
star
2

AISP

AI Image SIgnal Processing and Computational Photography - Bokeh Rendering , Reversed ISP Challenge, Model-Based Image Signal Processors via Learnable Dictionaries. Official repo for NTIRE and AIM Challenges
Jupyter Notebook
338
star
3

nilut

[AAAI 2024] NILUT: Conditional Neural Implicit 3D Lookup Tables for Image Enhancement. Project Website https://mv-lab.github.io/nilut/
Jupyter Notebook
63
star
4

kuzushiji-recognition

Kuzushiji Recognition Kaggle 2019. Build a DL model to transcribe ancient Kuzushiji into contemporary Japanese characters. Opening the door to a thousand years of Japanese culture.
Jupyter Notebook
21
star
5

youtube8m-19

Google Research 3rd YouTube-8M Video Understanding Challenge 2019. Temporal localization of topics within video. International Conference on Computer Vision (ICCV) 2019.
Jupyter Notebook
17
star
6

Squanchy-PL

Squanchy is a brand new, easy to learn, general purpose, multi-paradigm, compiled programming language. The language is written from scratch (it includes an integrated lexer, parser, code generator etc). I tried to put together Python and Haskell (or at least the main features from both) in Squanchy. In other words you can use it as a scripting language, can do maths (calculus, matrix ...) due to its functional side, work with data ...
Python
15
star
7

IQA-Conformer-BNS

Conformer and Blind Noisy Students for Improved Image Quality Assessment
Python
12
star
8

commonlit-readability-nlp

CommonLit Readability Prize 2021. NLP competition hosted at Kaggle: https://www.kaggle.com/c/commonlitreadabilityprize/. Rate the complexity of literary passages for grades 3-12 classroom use
Jupyter Notebook
8
star
9

dna-proto-workflow

Snakemake ProtoWorkflow for DNA Analysis.
Python
4
star
10

RSNA-Pulmonary-Embolism-AI-Challenge

2020 RSNA-STR Pulmonary Embolism Detection AI Challenge: Classify Pulmonary Embolism cases in chest CT scans. 12th place solution.
Jupyter Notebook
4
star
11

RSNA-AI-Challenge2019

RSNA Intracranial Hemorrhage Detection. The challenge is to build an algorithm to detect acute intracranial hemorrhage and its subtypes. The Dataset provided by the Radiological Society of North America (RSNA) and MD.ai.
Python
4
star
12

CHAMPS-Kaggle19

Predicting Molecular Properties. CHAMPS Kaggle competition 2019.
Python
2
star
13

VideoAI-Speedrun

VQA & VSR Efficiency and Runtime Evaluation -- AIS 2024 Workshop @ CVPR
Python
2
star
14

mv-lab.github.io

HTML
1
star