• Stars
    star
    299
  • Rank 139,269 (Top 3 %)
  • Language
    Python
  • License
    BSD 2-Clause "Sim...
  • Created about 2 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

General Purpose Data Manipulation Library
redframes
Pandas Version PyPI Downloads

About

redframes (rectangular data frames) is a general purpose data manipulation library that prioritizes syntax, simplicity, and speed (to a solution). Importantly, the library is fully interoperable with pandas, compatible with scikit-learn, and works great with matplotlib.

Install & Import

pip install redframes
import redframes as rf

Quickstart

Copy-and-paste this to get started:

import redframes as rf

df = rf.DataFrame({
    'bear': ['Brown bear', 'Polar bear', 'Asian black bear', 'American black bear', 'Sun bear', 'Sloth bear', 'Spectacled bear', 'Giant panda'],
    'genus': ['Ursus', 'Ursus', 'Ursus', 'Ursus', 'Helarctos', 'Melursus', 'Tremarctos', 'Ailuropoda'],
    'weight (male, lbs)': ['300-860', '880-1320', '220-440', '125-500', '60-150', '175-310', '220-340', '190-275'],
    'weight (female, lbs)': ['205-455', '330-550', '110-275', '90-300', '45-90', '120-210', '140-180', '155-220']
})

# | bear                | genus      | weight (male, lbs)   | weight (female, lbs)   |
# |:--------------------|:-----------|:---------------------|:-----------------------|
# | Brown bear          | Ursus      | 300-860              | 205-455                |
# | Polar bear          | Ursus      | 880-1320             | 330-550                |
# | Asian black bear    | Ursus      | 220-440              | 110-275                |
# | American black bear | Ursus      | 125-500              | 90-300                 |
# | Sun bear            | Helarctos  | 60-150               | 45-90                  |
# | Sloth bear          | Melursus   | 175-310              | 120-210                |
# | Spectacled bear     | Tremarctos | 220-340              | 140-180                |
# | Giant panda         | Ailuropoda | 190-275              | 155-220                |

(
    df
        .rename({"weight (male, lbs)": "male", "weight (female, lbs)": "female"})
        .gather(["male", "female"], into=("sex", "weight"))
        .split("weight", into=["min", "max"], sep="-")
        .gather(["min", "max"], into=("stat", "weight"))
        .mutate({"weight": lambda row: float(row["weight"])})
        .group(["genus", "sex"])
        .rollup({"weight": ("weight", rf.stat.mean)})
        .spread("sex", using="weight")
        .mutate({"dimorphism": lambda row: round(row["male"] / row["female"], 2)})
        .drop(["male", "female"])
        .sort("dimorphism", descending=True)
)

# | genus      |   dimorphism |
# |:-----------|-------------:|
# | Ursus      |         2.01 |
# | Tremarctos |         1.75 |
# | Helarctos  |         1.56 |
# | Melursus   |         1.47 |
# | Ailuropoda |         1.24 |

For comparison, here's the equivalent pandas:

import pandas as pd

# df = pd.DataFrame({...})

df = df.rename(columns={"weight (male, lbs)": "male", "weight (female, lbs)": "female"})
df = pd.melt(df, id_vars=['bear', 'genus'], value_vars=['male', 'female'], var_name='sex', value_name='weight')
df[["min", "max"]] = df["weight"].str.split("-", expand=True)
df = df.drop("weight", axis=1)
df = pd.melt(df, id_vars=['bear', 'genus', 'sex'], value_vars=['min', 'max'], var_name='stat', value_name='weight')
df['weight'] = df["weight"].astype('float')
df = df.groupby(["genus", "sex"])["weight"].mean()
df = df.reset_index()
df = pd.pivot_table(df, index=['genus'], columns=['sex'], values='weight')
df = df.reset_index()
df = df.rename_axis(None, axis=1)
df["dimorphism"] = round(df["male"] / df["female"], 2)
df = df.drop(["female", "male"], axis=1)
df = df.sort_values("dimorphism", ascending=False)
df = df.reset_index(drop=True)

# 🤮

IO

Save, load, and convert rf.DataFrame objects:

# save .csv
rf.save(df, "bears.csv")

# load .csv
df = rf.load("bears.csv")

# convert redframes → pandas
pandas_df = rf.unwrap(df)

# convert pandas → redframes
df = rf.wrap(pandas_df)

Verbs

Verbs are pure and "chain-able" methods that manipulate rf.DataFrame objects. Here is the complete list (see docstrings for examples and more details):

Verb Description
accumulate Run a cumulative sum over a column
append Append rows from another DataFrame
combine Combine multiple columns into a single column (opposite of split)
cross Cross join columns from another DataFrame
dedupe Remove duplicate rows
denix Remove rows with missing values
drop Drop entire columns (opposite of select)
fill Fill missing values "down", "up", or with a constant
filter Keep rows matching specific conditions
gather Gather columns into rows (opposite of spread)
group Prepare groups for compatible verbs
join Join columns from another DataFrame
mutate Create a new, or overwrite an existing column
pack Collate and concatenate row values for a target column (opposite of unpack)
rank Rank order values in a column
rename Rename column keys
replace Replace matching values within columns
rollup Apply summary functions and/or statistics to target columns
sample Randomly sample any number of rows
select Select specific columns (opposite of drop)
shuffle Shuffle the order of all rows
sort Sort rows by specific columns
split Split a single column into multiple columns (opposite of combine)
spread Spread rows into columns (opposite of gather)
take Take any number of rows (from the top/bottom)
unpack "Explode" concatenated row values into multiple rows (opposite of pack)

Properties

In addition to all of the verbs there are several properties attached to each DataFrame object:

df["genus"] 
# ['Ursus', 'Ursus', 'Ursus', 'Ursus', 'Helarctos', 'Melursus', 'Tremarctos', 'Ailuropoda']

df.columns 
# ['bear', 'genus', 'weight (male, lbs)', 'weight (female, lbs)']

df.dimensions
# {'rows': 8, 'columns': 4}

df.empty
# False

df.memory
# '2 KB'

df.types
# {'bear': object, 'genus': object, 'weight (male, lbs)': object, 'weight (female, lbs)': object}

matplotlib

rf.DataFrame objects integrate seamlessly with matplotlib:

import redframes as rf
import matplotlib.pyplot as plt

football = rf.DataFrame({
    'position': ['TE', 'K', 'RB', 'WR', 'QB'],
    'avp': [116.98, 131.15, 180, 222.22, 272.91]
})

df = (
    football
        .mutate({"color": lambda row: row["position"] in ["WR", "RB"]})
        .replace({"color": {False: "orange", True: "red"}})
)

plt.barh(df["position"], df["avp"], color=df["color"]);

redframes

scikit-learn

rf.DataFrame objects are fully compatible with sklearn functions, estimators, and transformers:

import redframes as rf
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

df = rf.DataFrame({
    "touchdowns": [15, 19, 5, 7, 9, 10, 12, 22, 16, 10],
    "age": [21, 22, 21, 24, 26, 28, 30, 35, 28, 21],
    "mvp": [1, 1, 0, 0, 0, 0, 0, 1, 0, 0]
})

target = "touchdowns"
y = df[target]
X = df.drop(target)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)

model = LinearRegression()
model.fit(X_train, y_train)
model.score(X_test, y_test)
# 0.5083194901655527

print(X_train.take(1))
# rf.DataFrame({'age': [21], 'mvp': [0]})

X_new = rf.DataFrame({'age': [22], 'mvp': [1]})
model.predict(X_new)
# array([19.])

More Repositories

1

gazpacho

🥫 The simple, fast, and modern web scraping library
Python
741
star
2

gif

The matplotlib Animation Extension
Python
659
star
3

hickory

Command line tool for scheduling Python scripts
Python
147
star
4

BreadBuddy

Recipe scheduler for iOS
Swift
135
star
5

DE4DS

⭕️ Data Engineering for Data Scientists
Jupyter Notebook
77
star
6

marc

Markov chain generator for Python and/or Swift
Swift
64
star
7

BRE

⭕️ Building Recommendation Engines
Jupyter Notebook
59
star
8

chart

Charts with pure python
Python
57
star
9

WS60

⭕️ Web Scraping in 60 Minutes
Jupyter Notebook
46
star
10

mummify

Version Control for Machine Learning
Python
45
star
11

MVML

⭕️ Minimum Viable Machine Learning
Jupyter Notebook
33
star
12

Sankey

Sankey diagrams in SwiftUI, powered by Google Charts
Swift
26
star
13

PFWP

📕 Personal Finance with Python
18
star
14

quote

Goodreads Quote API
Python
15
star
15

scrape.world

The Web Scraping Sandbox
HTML
14
star
16

AWS

⭕️ Advanced Web Scraping
Jupyter Notebook
11
star
17

PUNK

Jupyter Notebook
10
star
18

ADW

➕ Animating Data Workshop
Python
10
star
19

BIA

⭕️ Building iOS Apps with SwiftUI
Swift
9
star
20

talks

Code and slides for some of my past talks
Jupyter Notebook
8
star
21

Ponkan

Mandarin Chinese to Pinyin, IRT.
Swift
7
star
22

Carlo

Monte Carlo Tree Search Library
Swift
7
star
23

maxhumber.com

Personal Website + Blog
HTML
5
star
24

sausagelink

A Blockchain Parody
Python
4
star
25

MDA

➕ Modern Data Acquisition
Jupyter Notebook
3
star
26

FSVA

⭕️ First Steps: Visualization with Altair
Jupyter Notebook
3
star
27

CDML

➕ Continuously Deployed ML
Jupyter Notebook
2
star
28

HDD

🕰 Hickory Dickory Dock... Geekle Conference Presentation
Python
2
star
29

ITF

⭕️ iOS Testing Fundamentals
Swift
2
star
30

ellehacks

🔬 Data Science x Elle Hacks
Jupyter Notebook
2
star
31

SUIPYER

The SwiftUI + Python Playbook
Python
1
star