• Stars
    star
    423
  • Rank 102,544 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created over 3 years ago
  • Updated 3 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

🪄 Auto-generate Streamlit UI from Pydantic Models and Dataclasses.

Streamlit Pydantic

Auto-generate Streamlit UI elements from Pydantic models.

Getting StartedDocumentationSupportReport a BugContributionChangelog

Streamlit-pydantic makes it easy to auto-generate UI elements from Pydantic models or dataclasses. Just define your data model and turn it into a full-fledged UI form. It supports data validation, nested models, and field limitations. Streamlit-pydantic can be easily integrated into any Streamlit app.

Beta Version: Only suggested for experimental usage.


Try out and explore various examples in our playground here.


Highlights

  • 🪄  Auto-generated UI elements from Pydantic models & Dataclasses.
  • 📇  Out-of-the-box data validation.
  • 📑  Supports nested Pydantic models.
  • 📏  Supports field limits and customizations.
  • 🎈  Easy to integrate into any Streamlit app.

Getting Started

Installation

Requirements: Python 3.6+.

pip install streamlit-pydantic

Usage

  1. Create a script (my_script.py) with a Pydantic model and render it via pydantic_form:

    import streamlit as st
    from pydantic import BaseModel
    import streamlit_pydantic as sp
    
    class ExampleModel(BaseModel):
        some_text: str
        some_number: int
        some_boolean: bool
    
    data = sp.pydantic_form(key="my_form", model=ExampleModel)
    if data:
        st.json(data.json())
  2. Run the streamlit server on the python script: streamlit run my_script.py

  3. You can find additional examples in the examples section below.

Examples


👉  Try out and explore these examples in our playground here


The following collection of examples demonstrate how Streamlit Pydantic can be applied in more advanced scenarios. You can find additional - even more advanced - examples in the examples folder or in the playground.

Simple Form

import streamlit as st
from pydantic import BaseModel

import streamlit_pydantic as sp


class ExampleModel(BaseModel):
    some_text: str
    some_number: int
    some_boolean: bool

data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(data.json())

Date Validation

import streamlit as st
from pydantic import BaseModel, Field, HttpUrl
from pydantic.color import Color

import streamlit_pydantic as sp


class ExampleModel(BaseModel):
    url: HttpUrl
    color: Color
    email: str = Field(..., max_length=100, regex=r"^\S+@\S+$")


data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(data.json())

Dataclasses Support

import dataclasses
import json

import streamlit as st
from pydantic.json import pydantic_encoder

import streamlit_pydantic as sp


@dataclasses.dataclass
class ExampleModel:
    some_number: int
    some_boolean: bool
    some_text: str = "default input"


data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(json.dumps(data, default=pydantic_encoder))

Complex Nested Model

from enum import Enum
from typing import Set

import streamlit as st
from pydantic import BaseModel, Field, ValidationError, parse_obj_as

import streamlit_pydantic as sp


class OtherData(BaseModel):
    text: str
    integer: int


class SelectionValue(str, Enum):
    FOO = "foo"
    BAR = "bar"


class ExampleModel(BaseModel):
    long_text: str = Field(..., description="Unlimited text property")
    integer_in_range: int = Field(
        20,
        ge=10,
        lt=30,
        multiple_of=2,
        description="Number property with a limited range.",
    )
    single_selection: SelectionValue = Field(
        ..., description="Only select a single item from a set."
    )
    multi_selection: Set[SelectionValue] = Field(
        ..., description="Allows multiple items from a set."
    )
    single_object: OtherData = Field(
        ...,
        description="Another object embedded into this model.",
    )


data = sp.pydantic_form(key="my_form", model=ExampleModel)
if data:
    st.json(data.json())

Render Input

from pydantic import BaseModel

import streamlit_pydantic as sp


class ExampleModel(BaseModel):
    some_text: str
    some_number: int = 10  # Optional
    some_boolean: bool = True  # Option


input_data = sp.pydantic_input("model_input", ExampleModel, use_sidebar=True)

Render Output

import datetime

from pydantic import BaseModel, Field

import streamlit_pydantic as sp


class ExampleModel(BaseModel):
    text: str = Field(..., description="A text property")
    integer: int = Field(..., description="An integer property.")
    date: datetime.date = Field(..., description="A date.")


instance = ExampleModel(text="Some text", integer=40, date=datetime.date.today())
sp.pydantic_output(instance)

Custom Form

import streamlit as st
from pydantic import BaseModel

import streamlit_pydantic as sp


class ExampleModel(BaseModel):
    some_text: str
    some_number: int = 10
    some_boolean: bool = True


with st.form(key="pydantic_form"):
    sp.pydantic_input(key="my_input_model", model=ExampleModel)
    submit_button = st.form_submit_button(label="Submit")

Support & Feedback

Type Channel
🚨  Bug Reports
🎁  Feature Requests
👩‍💻  Usage Questions
📢  Announcements

Documentation

The API documentation can be found here. To generate UI elements, you can use the high-level pydantic_form method. Or the more flexible lower-level pydantic_input and pydantic_output methods. See the examples section on how to use those methods.

Contribution

Development

To build the project and run the style/linter checks, execute:

make install
make check

Run make help to see additional commands for development.


Licensed MIT. Created and maintained with ❤️  by developers from Berlin.