• Stars
    star
    196
  • Rank 198,553 (Top 4 %)
  • Language
    Python
  • Created almost 7 years ago
  • Updated over 6 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

对抗性样本攻击与防御

对抗性样本攻击与防御

该代码探究了一种对于图像的攻击与防御方法。使用多种对抗性样本生成方法,在标准数据集上批量生成对抗性样本,从而达到欺骗神经网络的效果。同时,对于已经生成的对抗性样本做某些图像变换,去除对抗性样本噪声(noise),从而消除对抗性样本的影响,达到防御的效果。

【注】实验数据采用了Mnist/Cifar-10

攻击

攻击方法

  • fgsm(fast gradient sign method)
  • fgmt(fast gradient method with target)
  • deep fool
  • jsma(Jacobian-based saliency map approach)

点击以查看相关论文

代码

attack/文件夹包含了攻击方法的代码,具体如下:

  • fgsm_mnist.py:基于Mnist数据集训练模型

  • fgsm_eval.py:模型预测

  • fgsm_make_ad.py:对Mnist数据集生成对抗性样本(FGSM)

  • my_cifar10_train.py:基于Cifar-10数据集训练模型

  • my_cifar10_eval.py:模型预测

  • my_cifar10_maka_ad.py:对Cifar-10数据集生成对抗性样本(FGMT)

  • get_clean_img.py:提取Cifar-10数据集,以.png格式保存到本地

  • attack/attacks/:该文件夹是对攻击方法的代码封装

  • attack/example/:该文件夹是上述所有攻击方法在Mnist数据集的实现(尝试了不同的迭代次数、扰动值等)

为了节省训练时间,attack/example/中存放了两个已经训练好的模型:

  • model/:Mnist的预训练模型
  • my_model/:Cifar-10的预训练模型

防御

防御方法

对图像做DCT变换,然后逆变换回图像,只保留其基本的直流分量,以实现对抗性样本的去噪处理 DCT原理

代码

defense/文件夹包含了防御方法的代码,具体如下:

  • create_gray_scale_image.py:生成灰度图
  • dct&idct.py:对图像做DCT&IDCT变换,然后将新图像保存到本地

原始版本

代码来源

initial_version/文件夹是最原始的版本,实现了对单张图像的对抗性攻击和DCT去噪处理,数据集采用ImageNet中的图像,模型采用了Inception V3(Keras中的预训练模型),攻击方法采用FGMT,具体如下:

  • dection.py:模型预测
  • dct.py:将输入的图片做dct变换,再做逆变换,并保存新图  
  • create_ad.py:生成对抗性图片
  • create_gray_scale_image:生成灰度图
  • imagenet_classes.py:对抗性攻击目标

目前的问题

  • 对于cifar-10的模型识别准确率低于baseline(模型采用TensorFlow官方网站的tutorial)
  • 基于cifar-10生成的对抗性样本效果较差

作者相关

Author :Jiarun Cao
Advisor : Prof.chongwen Wang
Address:Beijing Insitute of Technology
E-mail : [email protected] && [email protected]

2018-08-06更新

提出了基于图像变换的防御方法:

  • Image quilting
  • Total variation minimization
  • JPEG compression
  • Pixel quantization

论文:

  • Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Countering Adversarial Images using Input Transformations. arXiv 1711.00117, 2017. [PDF]

代码:

如果对您有帮助,请Star一下,不胜感激