• Stars
    star
    123
  • Rank 290,145 (Top 6 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created almost 5 years ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Pretrained neural networks for UK Biobank brain MRI images. SFCN, 3D-ResNet etc.

Please star this repository if you like it :)

Feel free to leave feedbacks and ask questions. We want to make the repository helpful for your research.

We will keep updating this repository for pretrained models and weights.

UKBiobank_deep_pretrain

Pretrained neural networks for UK Biobank brain MRI images. SFCN, 3D-ResNet etc.

Under construction.

The models are trained, validated and benchmarked with UK Biobank brain MRI images, 14,503-subject release.

Model input shape: [batch_size, 1, 160, 192, 160]

Pretrained weights (no subject level information)

File Model No. training subjects Test MAE (years) Validation MAE (yrs) Train MAE (yrs) Val-Train MAE gap (yrs)
./brain_age/run_20190719_00_epoch_best_mae.p SFCN (SGD) 12,949 2.14Β±0.05 2.18Β±0.04 1.36Β±0.03 0.83Β±0.06

(As summarized in Table 1 in the manuscript)

Examples

Checkout the file examples.ipynb

model = SFCN()
model = torch.nn.DataParallel(model)
# This is to be modified with the path of saved weights
p_ = './run_20190719_00_epoch_best_mae.p'
model.load_state_dict(torch.load(p_))

Other resources

To cite

Accurate brain age prediction with lightweight deep neural networks Han Peng, Weikang Gong, Christian F. Beckmann, Andrea Vedaldi, Stephen M Smith Medical Image Analysis (2021); doi: https://doi.org/10.1016/j.media.2020.101871