• Stars
    star
    151
  • Rank 246,057 (Top 5 %)
  • Language
    R
  • Created about 10 years ago
  • Updated 8 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Functions to access data from Strava's v3 API.

rStrava

Marcus W. Beck, [email protected], Pedro Villarroel, [email protected], Daniel Padfield, [email protected], Lorenzo Gaborini, [email protected], Niklas von Maltzahn, [email protected]

R-CMD-check CRAN status DOI





Overview and installation

This is the development repository for rStrava, an R package to access data from the Strava API. The package can be installed from CRAN. It is also available on r-universe.

install.packages('rStrava')

The development version from this repository can be installed as follows:

install.packages('devtools')
devtools::install_github('fawda123/rStrava')

Issues and suggestions

Please report any issues and suggestions on the issues link for the repository.

Package overview

The functions are in two categories depending on mode of use. The first category of functions scrape data from the public Strava website and the second category uses the API functions or relies on data from the API functions. The second category requires an authentication token. The help files for each category can be viewed using help.search:

help.search('notoken', package = 'rStrava')
help.search('token', package = 'rStrava')

Scraping functions (no token)

An example using the scraping functions is below. Some users may have privacy settings that block public access to account data.

# get athlete data 
athl_fun(2837007, trace = FALSE)
## $`2837007`
## $`2837007`$name
## [1] "Marcus Beck"
## 
## $`2837007`$location
## [1] "Saint Petersburg, Florida"
## 
## $`2837007`$units
## [1] "mi" "ft"
## 
## $`2837007`$monthly
##        month     miles hours elev_gain
## 1 2022-11-01  45.55707     6       195
## 2 2022-12-01  62.25518     8       983
## 3 2023-01-01 112.87767    12       273
## 4 2023-02-01  74.15133     9       109
## 5 2023-03-01  94.99336    11       227
## 6 2023-04-01  77.32219     9        98
## 7 2023-05-01  69.49664     8        87
## 
## $`2837007`$recent
##           id           name type startDateLocal distance elevation movingTime
## 1 9130931408   Morning Ride ride     2023-05-24      2.7        11      10:52
## 2 9130716559    Morning Run  run     2023-05-24      3.2        12      26:35
## 3 9128167016 Afternoon Ride ride     2023-05-23      2.7        20      12:43
## 
## $`2837007`$achievements
## list()

API functions (token)

Setup

These functions require a Strava account and a personal API, both of which can be obtained on the Strava website. The user account can be created by following instructions on the Strava homepage. After the account is created, a personal API can be created under API tab of profile settings. The user must have an application name (chosen by the user), client id (different from the athlete id), and an application secret to create the authentication token. Additional information about the personal API can be found here. Every API retrieval function in the rStrava package requires an authentication token (called stoken in the help documents). The following is a suggested workflow for using the API functions with rStrava.

First, create the authentication token using your personal information from your API. Replace the app_name, app_client_id, and app_secret objects with the relevant info from your account.

app_name <- 'myappname' # chosen by user
app_client_id  <- 'myid' # an integer, assigned by Strava
app_secret <- 'xxxxxxxx' # an alphanumeric secret, assigned by Strava

# create the authentication token
stoken <- httr::config(token = strava_oauth(app_name, app_client_id, app_secret, app_scope="activity:read_all"))

Setting cache = TRUE for strava_oauth will create an authentication file in the working directory. This can be used in later sessions as follows:

stoken <- httr::config(token = readRDS('.httr-oauth')[[1]])

Finally, the get_heat_map and get_elev_prof functions require a key from the Google API. Follow the instructions here. The key can be added to the R environment file for later use:

# save the key, do only once
cat("google_key=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n",
    file=file.path(normalizePath("~/"), ".Renviron"),
    append=TRUE)

# retrieve the key, restart R if not found
google_key <- Sys.getenv("google_key")

The get_heat_map function uses ggmap to create base maps. A Google API key is needed to use the function. This key must be registered externally with the ggmap package using register_google() before executing get_heat_map.

library(ggmap)
register_google(google_key)

Using the functions

The API retrieval functions are used with the token.

myinfo <- get_athlete(stoken, id = '2837007')
head(myinfo)
## $id
## [1] 2837007
## 
## $username
## [1] "beck_marcus"
## 
## $resource_state
## [1] 2
## 
## $firstname
## [1] "Marcus"
## 
## $lastname
## [1] "Beck"
## 
## $bio
## [1] ""

An example creating a heat map of activities:

library(dplyr)

# get activities, get activities by lat/lon, distance, plot
my_acts <- get_activity_list(stoken)
act_data <- compile_activities(my_acts) %>% 
    filter(start_latlng2 < -86.5 & start_latlng2 > -88.5) %>% 
    filter(start_latlng1 < 31.5 & start_latlng1 > 30) %>% 
    filter(distance > 20)
    
get_heat_map(act_data, key = google_key, col = 'darkgreen', size = 2, distlab = F, f = 0.4)

Plotting elevation and grade for a single ride:

# actitivy id
id <- 1784292574

# plot elevation along a single ride
get_heat_map(my_acts, id = id, alpha = 1, add_elev = T, f = 0.5, distlab = F, key = google_key, size = 2, col = 'Spectral', maptype = 'satellite', units = 'imperial')

# plot % gradient along a single ride
get_heat_map(my_acts, id = id, alpha = 1, add_elev = T, f = 0.5,  distlab = F, as_grad = T, key = google_key, size = 2, col = 'Spectral', expand = 5, maptype = 'satellite', units = 'imperial')

Get elevation profiles for activities:

# get activities
my_acts <- get_activity_list(stoken) 

get_elev_prof(my_acts, id = id, key = google_key, units = 'imperial')

get_elev_prof(my_acts, id = id, key = google_key, units = 'imperial', total = T)

Plot average speed per split (km or mile) for an activity:

# plots for most recent activity
plot_spdsplits(my_acts, stoken, id = id, units = 'imperial')

Additional functions are provided to get β€œstream” information for individual activities. Streams provide detailed information about location, time, speed, elevation, gradient, cadence, watts, temperature, and moving status (yes/no) for an individual activity.

Use get_activity_streams for detailed info about activities:

# get streams for the first activity in my_acts
strms_data <- get_activity_streams(my_acts, stoken, id = id)
head(strms_data)
##   altitude distance grade_smooth      lat       lng moving time velocity_smooth
## 1    310.0   0.0000         -1.2 33.60582 -117.8021  FALSE    0            0.00
## 2    310.1   0.0034         -2.1 33.60582 -117.8021   TRUE    9            1.44
## 3    309.9   0.0082         -2.2 33.60581 -117.8020   TRUE   11            2.52
## 4    309.7   0.0141         -3.2 33.60580 -117.8020   TRUE   13            3.96
## 5    309.6   0.0180         -1.6 33.60580 -117.8019   TRUE   14           10.44
## 6    309.5   0.0223          0.0 33.60580 -117.8019   TRUE   15           11.52
##           id
## 1 1784292574
## 2 1784292574
## 3 1784292574
## 4 1784292574
## 5 1784292574
## 6 1784292574

Stream data can be plotted using any of the plotting functions.

# heat map
get_heat_map(strms_data, alpha = 1, filltype = 'speed', f = 0.5, size = 2, col = 'Spectral', distlab = F, maptype = 'satellite')

# elevation profile
get_elev_prof(strms_data)

# speed splits
plot_spdsplits(strms_data, stoken)

Contributing

Please view our contributing guidelines for any changes or pull requests.

License

This package is released in the public domain under the creative commons license CC0.

More Repositories

1

NeuralNetTools

R package of generic neural network tools
R
71
star
2

ggord

a take on ordination plots using ggplot2
R
58
star
3

diss_proc

R
23
star
4

pan_flow

supporting docs for r pandoc workflow
TeX
13
star
5

SWMPr

r package for accessing, processing, and evaluating data from SWMP of NERRS
R
12
star
6

ggpres_102

presentation for EPA R user group, ggplot2 102
HTML
5
star
7

swmp_summary

Summary of seasonal and annual changes in swmp data
CSS
5
star
8

WtRegDO

A simple package to implement weighted regression on dissolved oxygen time series
R
5
star
9

swmp_comp

comparisons of reserves over time using all SWMP data
CSS
4
star
10

CTDplot

Plot CTD water quality data along an estuarine axis
R
2
star
11

CV

TeX
2
star
12

veggam

materials for GAM evaluation of native/non-native veg in MN
R
1
star
13

swmp_installR

Simple document for R/RStudio installation instructions
TeX
1
star
14

detiding_cases

case studies for removing tidal signal from DO time series
R
1
star
15

swmp_rats

processing and analyzing SWMP data for comparative analyses
HTML
1
star
16

identifiability

materials for manuscript about parameter identifiability
TeX
1
star
17

weeks

time series analysis of Weeks Bay DO and detiding
R
1
star
18

swmp_agg

CSS
1
star
19

EPA_exit

materials for EPA departure presentations
TeX
1
star
20

deepwaterbenthos

materials for deep water benthos analysis
HTML
1
star
21

sgdepth_manu

manuscript materials for seagrass depth of colonization
HTML
1
star
22

bight_habs

Materials for analysis of Bight HABs data
HTML
1
star
23

detiding_sim

DO simulations for removing tidal signal
R
1
star
24

sg_depth

seagrass depth of colonization
R
1
star
25

WRTDStidal

functions required to implement the weighted regression approach for estuaries
R
1
star
26

detide_eval

Materials for evaluating DO detiding with weighted regression
R
1
star
27

SFS_GIS_R_training

Materials for SFS 2018 GIS R training workshop
JavaScript
1
star
28

SFbaytrends

materials for SF bay trend analysis
R
1
star
29

chnep

CHNEP Water Atlas
HTML
1
star
30

nnt_manu

materials for NeuralNetTools manuscript
TeX
1
star