• Stars
    star
    516
  • Rank 85,726 (Top 2 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 5 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Python Client and Toolkit for DataFrames, Big Data, Machine Learning and ETL in Elasticsearch

PyPI Version Conda Version Downloads Package Status Build Status License Documentation Status

About

Eland is a Python Elasticsearch client for exploring and analyzing data in Elasticsearch with a familiar Pandas-compatible API.

Where possible the package uses existing Python APIs and data structures to make it easy to switch between numpy, pandas, or scikit-learn to their Elasticsearch powered equivalents. In general, the data resides in Elasticsearch and not in memory, which allows Eland to access large datasets stored in Elasticsearch.

Eland also provides tools to upload trained machine learning models from common libraries like scikit-learn, XGBoost, and LightGBM into Elasticsearch.

Getting Started

Eland can be installed from PyPI with Pip:

$ python -m pip install eland

Eland can also be installed from Conda Forge with Conda:

$ conda install -c conda-forge eland

Compatibility

  • Supports Python 3.8, 3.9, 3.10 and Pandas 1.5
  • Supports Elasticsearch clusters that are 7.11+, recommended 8.3 or later for all features to work. If you are using the NLP with PyTorch feature make sure your Eland minor version matches the minor version of your Elasticsearch cluster. For all other features it is sufficient for the major versions to match.
  • You need to use PyTorch 1.13.1 or earlier to import an NLP model. Run pip install torch==1.13.1 to install the aproppriate version of PyTorch.

Prerequisites

Users installing Eland on Debian-based distributions may need to install prerequisite packages for the transitive dependencies of Eland:

$ sudo apt-get install -y \
  build-essential pkg-config cmake \
  python3-dev libzip-dev libjpeg-dev

Note that other distributions such as CentOS, RedHat, Arch, etc. may require using a different package manager and specifying different package names.

Docker

Users wishing to use Eland without installing it, in order to just run the available scripts, can build the Docker container:

$ docker build -t elastic/eland .

The container can now be used interactively:

$ docker run -it --rm --network host elastic/eland

Running installed scripts is also possible without an interactive shell, e.g.:

$ docker run -it --rm --network host \
    elastic/eland \
    eland_import_hub_model \
      --url http://host.docker.internal:9200/ \
      --hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \
      --task-type ner

Connecting to Elasticsearch

Eland uses the Elasticsearch low level client to connect to Elasticsearch. This client supports a range of connection options and authentication options.

You can pass either an instance of elasticsearch.Elasticsearch to Eland APIs or a string containing the host to connect to:

import eland as ed

# Connecting to an Elasticsearch instance running on 'localhost:9200'
df = ed.DataFrame("localhost:9200", es_index_pattern="flights")

# Connecting to an Elastic Cloud instance
from elasticsearch import Elasticsearch

es = Elasticsearch(
    cloud_id="cluster-name:...",
    http_auth=("elastic", "<password>")
)
df = ed.DataFrame(es, es_index_pattern="flights")

DataFrames in Eland

eland.DataFrame wraps an Elasticsearch index in a Pandas-like API and defers all processing and filtering of data to Elasticsearch instead of your local machine. This means you can process large amounts of data within Elasticsearch from a Jupyter Notebook without overloading your machine.

➀ Eland DataFrame API documentation

➀ Advanced examples in a Jupyter Notebook

>>> import eland as ed

>>> # Connect to 'flights' index via localhost Elasticsearch node
>>> df = ed.DataFrame('localhost:9200', 'flights')

# eland.DataFrame instance has the same API as pandas.DataFrame
# except all data is in Elasticsearch. See .info() memory usage.
>>> df.head()
   AvgTicketPrice  Cancelled  ... dayOfWeek           timestamp
0      841.265642      False  ...         0 2018-01-01 00:00:00
1      882.982662      False  ...         0 2018-01-01 18:27:00
2      190.636904      False  ...         0 2018-01-01 17:11:14
3      181.694216       True  ...         0 2018-01-01 10:33:28
4      730.041778      False  ...         0 2018-01-01 05:13:00

[5 rows x 27 columns]

>>> df.info()
<class 'eland.dataframe.DataFrame'>
Index: 13059 entries, 0 to 13058
Data columns (total 27 columns):
 #   Column              Non-Null Count  Dtype         
---  ------              --------------  -----         
 0   AvgTicketPrice      13059 non-null  float64       
 1   Cancelled           13059 non-null  bool          
 2   Carrier             13059 non-null  object        
...      
 24  OriginWeather       13059 non-null  object        
 25  dayOfWeek           13059 non-null  int64         
 26  timestamp           13059 non-null  datetime64[ns]
dtypes: bool(2), datetime64[ns](1), float64(5), int64(2), object(17)
memory usage: 80.0 bytes
Elasticsearch storage usage: 5.043 MB

# Filtering of rows using comparisons
>>> df[(df.Carrier=="Kibana Airlines") & (df.AvgTicketPrice > 900.0) & (df.Cancelled == True)].head()
     AvgTicketPrice  Cancelled  ... dayOfWeek           timestamp
8        960.869736       True  ...         0 2018-01-01 12:09:35
26       975.812632       True  ...         0 2018-01-01 15:38:32
311      946.358410       True  ...         0 2018-01-01 11:51:12
651      975.383864       True  ...         2 2018-01-03 21:13:17
950      907.836523       True  ...         2 2018-01-03 05:14:51

[5 rows x 27 columns]

# Running aggregations across an index
>>> df[['DistanceKilometers', 'AvgTicketPrice']].aggregate(['sum', 'min', 'std'])
     DistanceKilometers  AvgTicketPrice
sum        9.261629e+07    8.204365e+06
min        0.000000e+00    1.000205e+02
std        4.578263e+03    2.663867e+02

Machine Learning in Eland

Regression and classification

Eland allows transforming trained regression and classification models from scikit-learn, XGBoost, and LightGBM libraries to be serialized and used as an inference model in Elasticsearch.

➀ Eland Machine Learning API documentation

➀ Read more about Machine Learning in Elasticsearch

>>> from xgboost import XGBClassifier
>>> from eland.ml import MLModel

# Train and exercise an XGBoost ML model locally
>>> xgb_model = XGBClassifier(booster="gbtree")
>>> xgb_model.fit(training_data[0], training_data[1])

>>> xgb_model.predict(training_data[0])
[0 1 1 0 1 0 0 0 1 0]

# Import the model into Elasticsearch
>>> es_model = MLModel.import_model(
    es_client="localhost:9200",
    model_id="xgb-classifier",
    model=xgb_model,
    feature_names=["f0", "f1", "f2", "f3", "f4"],
)

# Exercise the ML model in Elasticsearch with the training data
>>> es_model.predict(training_data[0])
[0 1 1 0 1 0 0 0 1 0]

NLP with PyTorch

For NLP tasks, Eland allows importing PyTorch trained BERT models into Elasticsearch. Models can be either plain PyTorch models, or supported transformers models from the Hugging Face model hub.

$ eland_import_hub_model \
  --url http://localhost:9200/ \
  --hub-model-id elastic/distilbert-base-cased-finetuned-conll03-english \
  --task-type ner \
  --start

The example above will automatically start a model deployment. This is a good shortcut for initial experimentation, but for anything that needs good throughput you should omit the --start argument from the Eland command line and instead start the model using the ML UI in Kibana. The --start argument will deploy the model with one allocation and one thread per allocation, which will not offer good performance. When starting the model deployment using the ML UI in Kibana or the Elasticsearch API you will be able to set the threading options to make best use of your hardware.

>>> import elasticsearch
>>> from pathlib import Path
>>> from eland.common import es_version
>>> from eland.ml.pytorch import PyTorchModel
>>> from eland.ml.pytorch.transformers import TransformerModel

>>> es = elasticsearch.Elasticsearch("http://elastic:mlqa_admin@localhost:9200")
>>> es_cluster_version = es_version(es)

# Load a Hugging Face transformers model directly from the model hub
>>> tm = TransformerModel(model_id="elastic/distilbert-base-cased-finetuned-conll03-english", task_type="ner", es_version=es_cluster_version)
Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 257/257 [00:00<00:00, 108kB/s]
Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 954/954 [00:00<00:00, 372kB/s]
Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 208k/208k [00:00<00:00, 668kB/s] 
Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 112/112 [00:00<00:00, 43.9kB/s]
Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 249M/249M [00:23<00:00, 11.2MB/s]

# Export the model in a TorchScrpt representation which Elasticsearch uses
>>> tmp_path = "models"
>>> Path(tmp_path).mkdir(parents=True, exist_ok=True)
>>> model_path, config, vocab_path = tm.save(tmp_path)

# Import model into Elasticsearch
>>> ptm = PyTorchModel(es, tm.elasticsearch_model_id())
>>> ptm.import_model(model_path=model_path, config_path=None, vocab_path=vocab_path, config=config)
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 63/63 [00:12<00:00,  5.02it/s]

More Repositories

1

elasticsearch

Free and Open, Distributed, RESTful Search Engine
Java
65,029
star
2

kibana

Your window into the Elastic Stack
TypeScript
19,520
star
3

logstash

Logstash - transport and process your logs, events, or other data
Java
13,615
star
4

elasticsearch-php

Official PHP client for Elasticsearch.
PHP
5,190
star
5

elasticsearch-js

Official Elasticsearch client library for Node.js
TypeScript
5,174
star
6

go-elasticsearch

The official Go client for Elasticsearch
Go
4,933
star
7

elasticsearch-py

Official Python client for Elasticsearch
Python
4,034
star
8

elasticsearch-dsl-py

High level Python client for Elasticsearch
Python
3,695
star
9

elasticsearch-definitive-guide

The Definitive Guide to Elasticsearch
HTML
3,521
star
10

elasticsearch-net

This strongly-typed, client library enables working with Elasticsearch. It is the official client maintained and supported by Elastic.
C#
3,469
star
11

curator

Curator: Tending your Elasticsearch indices
Python
3,032
star
12

elasticsearch-rails

Elasticsearch integrations for ActiveModel/Record and Ruby on Rails
Ruby
3,017
star
13

examples

Home for Elasticsearch examples available to everyone. It's a great way to get started.
Jupyter Notebook
2,587
star
14

cloud-on-k8s

Elastic Cloud on Kubernetes
Go
2,574
star
15

elasticsearch-ruby

Ruby integrations for Elasticsearch
Ruby
1,928
star
16

elasticsearch-hadoop

🐘 Elasticsearch real-time search and analytics natively integrated with Hadoop
Java
1,915
star
17

detection-rules

Python
1,884
star
18

helm-charts

You know, for Kubernetes
Python
1,807
star
19

search-ui

Search UI. Libraries for the fast development of modern, engaging search experiences.
TypeScript
1,796
star
20

logstash-forwarder

An experiment to cut logs in preparation for processing elsewhere. Replaced by Filebeat: https://github.com/elastic/beats/tree/master/filebeat
Go
1,788
star
21

ansible-elasticsearch

Ansible playbook for Elasticsearch
Ruby
1,567
star
22

stack-docker

Project no longer maintained.
Shell
1,189
star
23

apm-server

APM Server
Go
1,100
star
24

protections-artifacts

Elastic Security detection content for Endpoint
YARA
980
star
25

ecs

Elastic Common Schema
Python
920
star
26

ember

Elastic Malware Benchmark for Empowering Researchers
Jupyter Notebook
799
star
27

elasticsearch-docker

Official Elasticsearch Docker image
Python
790
star
28

elasticsearch-rs

Official Elasticsearch Rust Client
Rust
612
star
29

elasticsearch-labs

Notebooks & Example Apps for Search & AI Applications with Elasticsearch
Jupyter Notebook
597
star
30

elasticsearch-cloud-aws

AWS Cloud Plugin for Elasticsearch
580
star
31

apm-agent-nodejs

Elastic APM Node.js Agent
JavaScript
540
star
32

apm-agent-dotnet

Elastic APM .NET Agent
C#
540
star
33

apm-agent-java

Elastic APM Java Agent
Java
536
star
34

elasticsearch-mapper-attachments

Mapper Attachments Type plugin for Elasticsearch
Java
503
star
35

elasticsearch-servicewrapper

A service wrapper on top of elasticsearch
Shell
489
star
36

apm-agent-go

Official Go agent for Elastic APM
Go
390
star
37

sense

A JSON aware developer's interface to Elasticsearch. Comes with handy machinery such as syntax highlighting, autocomplete, formatting and code folding.
JavaScript
382
star
38

apm-agent-python

Official Python agent for Elastic APM
Python
381
star
39

elastic-charts

TypeScript
365
star
40

stream2es

Stream data into ES (Wikipedia, Twitter, stdin, or other ESes)
Clojure
356
star
41

timelion

Timelion was absorbed into Kibana 5. Don't use this. Time series composer for Elasticsearch and beyond.
JavaScript
347
star
42

apm

Elastic Application Performance Monitoring - resources and general issue tracking for Elastic APM.
Gherkin
317
star
43

elasticsearch-net-example

A tutorial repository for Elasticsearch and NEST
305
star
44

elasticsearch-migration

This plugin will help you to check whether you can upgrade directly to the next major version of Elasticsearch, or whether you need to make changes to your data and cluster before doing so.
291
star
45

logstash-docker

Official Logstash Docker image
Python
286
star
46

elasticsearch-py-async

Backend for elasticsearch-py based on python's asyncio module.
Python
283
star
47

support-diagnostics

Support diagnostics utility for elasticsearch and logstash
Java
278
star
48

elasticsearch-java

Official Elasticsearch Java Client
Java
274
star
49

es2unix

Command-line ES
Clojure
274
star
50

elasticsearch-analysis-smartcn

Smart Chinese Analysis Plugin for Elasticsearch
268
star
51

dockerfiles

Dockerfiles for the official Elastic Stack images
Shell
253
star
52

go-sysinfo

go-sysinfo is a library for collecting system information.
Go
249
star
53

kibana-docker

Official Kibana Docker image
Python
243
star
54

elasticsearch-metrics-reporter-java

Metrics reporter, which reports to elasticsearch
Java
232
star
55

apm-agent-php

Elastic APM PHP Agent
PHP
229
star
56

docs

Ruby
229
star
57

elasticsearch-river-twitter

Twitter River Plugin for elasticsearch (STOPPED)
Java
202
star
58

elasticsearch-formal-models

Formal models of core Elasticsearch algorithms
Isabelle
200
star
59

rally-tracks

Track specifications for the Elasticsearch benchmarking tool Rally
Python
197
star
60

integrations

Elastic Integrations
Handlebars
194
star
61

beats-dashboards

DEPRECATED. Moved to https://github.com/elastic/beats. Please use the new repository to add new issues.
Shell
192
star
62

elasticsearch-analysis-icu

ICU Analysis plugin for Elasticsearch
189
star
63

elasticsearch-river-rabbitmq

RabbitMQ River Plugin for elasticsearch (STOPPED)
Java
173
star
64

terraform-provider-ec

Go
171
star
65

elasticsearch-analysis-kuromoji

Japanese (kuromoji) Analysis Plugin
168
star
66

dorothy

Dorothy is a tool to test security monitoring and detection for Okta environments
Python
167
star
67

beats-docker

Official Beats Docker images
Python
165
star
68

elasticsearch-river-couchdb

CouchDB River Plugin for elasticsearch (STOPPED)
Java
163
star
69

SWAT

Simple Workspace Attack Tool (SWAT) is a tool for simulating malicious behavior against Google Workspace in reference to the MITRE ATT&CK framework.
Python
156
star
70

apm-agent-ruby

Elastic APM agent for Ruby
Ruby
156
star
71

go-freelru

GC-less, fast and generic LRU hashmap library for Go
Go
151
star
72

require-in-the-middle

Module to hook into the Node.js require function
JavaScript
149
star
73

harp

Secret management by contract toolchain
Go
145
star
74

go-libaudit

go-libaudit is a library for communicating with the Linux Audit Framework.
Go
142
star
75

ml-cpp

Machine learning C++ code
C++
139
star
76

ecs-logging-java

Centralized logging for Java applications with the Elastic stack made easy
Java
137
star
77

ansible-beats

Ansible Beats Role
Ruby
131
star
78

logstash-contrib

THIS REPOSITORY IS NO LONGER USED.
Ruby
128
star
79

elasticsearch-analysis-phonetic

Phonetic Analysis Plugin for Elasticsearch
127
star
80

azure-marketplace

Elasticsearch Azure Marketplace offering + ARM template
Shell
122
star
81

golang-crossbuild

Shell
121
star
82

elastic-agent

Elastic Agent - single, unified way to add monitoring for logs, metrics, and other types of data to a host.
Go
121
star
83

anonymize-it

a general utility for anonymizing data
Python
117
star
84

bpfcov

Source-code based coverage for eBPF programs actually running in the Linux kernel
C
115
star
85

windows-installers

Windows installers for the Elastic stack
C#
113
star
86

terraform-provider-elasticstack

Terraform provider for Elastic Stack
Go
111
star
87

makelogs

JavaScript
108
star
88

elasticsearch-lang-python

Python language Plugin for elasticsearch
104
star
89

stack-docs

Elastic Stack Documentation
Java
96
star
90

sysgrok

LLM-driven assistant for analyzing, understanding and optimizing systems
Python
94
star
91

elasticsearch-lang-javascript

JavaScript language Plugin for elasticsearch
93
star
92

crawler

Ruby
92
star
93

elasticsearch-specification

Elasticsearch full specification
TypeScript
89
star
94

elasticsearch-perl

Official Perl low-level client for Elasticsearch.
Perl
87
star
95

next-eui-starter

Start building Kibana protoypes quickly with the Next.js EUI Starter
TypeScript
87
star
96

vue-search-ui-demo

A demo of implementing Elastic's Search UI and App Search using Vue.js
Vue
87
star
97

elasticsearch-transport-thrift

Thrift Transport for elasticsearch (STOPPED)
Java
84
star
98

beats

🐠 Beats - Lightweight shippers for Elasticsearch & Logstash
Go
83
star
99

ecs-dotnet

.NET integrations that use the Elastic Common Schema (ECS)
HTML
82
star
100

generator-kibana-plugin

DEPRECATED Yeoman Generator for Kibana Plugins, please use https://github.com/elastic/template-kibana-plugin/
JavaScript
79
star