• Stars
    star
    1,038
  • Rank 44,388 (Top 0.9 %)
  • Language
    Java
  • License
    Apache License 2.0
  • Created about 10 years ago
  • Updated about 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Immutable in-memory R-tree and R*-tree implementations in Java with reactive api

rtree


Coverity Scan
Maven Central
codecov

In-memory immutable 2D R-tree implementation in java using RxJava Observables for reactive processing of search results.

Status: released to Maven Central

Note that the next version (without a reactive API and without serialization) is at rtree2.

An R-tree is a commonly used spatial index.

This was fun to make, has an elegant concise algorithm, is thread-safe, fast, and reasonably memory efficient (uses structural sharing).

The algorithm to achieve immutability is cute. For insertion/deletion it involves recursion down to the required leaf node then recursion back up to replace the parent nodes up to the root. The guts of it is in Leaf.java and NonLeaf.java.

Backpressure support required some complexity because effectively a bookmark needed to be kept for a position in the tree and returned to later to continue traversal. An immutable stack containing the node and child index of the path nodes came to the rescue here and recursion was abandoned in favour of looping to prevent stack overflow (unfortunately java doesn't support tail recursion!).

Maven site reports are here including javadoc.

Features

  • immutable R-tree suitable for concurrency
  • Guttman's heuristics (Quadratic splitter) (paper)
  • R*-tree heuristics (paper)
  • Customizable splitter and selector
  • 10x faster index creation with STR bulk loading (paper).
  • search returns Observable
  • search is cancelled by unsubscription
  • search is O(log(n)) on average
  • insert, delete are O(n) worst case
  • all search methods return lazy-evaluated streams offering efficiency and flexibility of functional style including functional composition and concurrency
  • balanced delete
  • uses structural sharing
  • supports backpressure
  • JMH benchmarks
  • visualizer included
  • serialization using FlatBuffers
  • high unit test code coverage
  • R*-tree performs 900,000 searches/second returning 22 entries from a tree of 38,377 Greek earthquake locations on [email protected] (maxChildren=4, minChildren=1). Insert at 240,000 entries per second.
  • requires java 1.6 or later

Number of points = 1000, max children per node 8:

Quadratic split R*-tree split STR bulk loaded

Notice that there is little overlap in the R*-tree split compared to the Quadratic split. This should provide better search performance (and in general benchmarks show this).

STR bulk loaded R-tree has a bit more overlap than R*-tree, which affects the search performance at some extent.

Getting started

Add this maven dependency to your pom.xml:

<dependency>
  <groupId>com.github.davidmoten</groupId>
  <artifactId>rtree</artifactId>
  <version>VERSION_HERE</version>
</dependency>

Instantiate an R-Tree

Use the static builder methods on the RTree class:

// create an R-tree using Quadratic split with max
// children per node 4, min children 2 (the threshold
// at which members are redistributed)
RTree<String, Geometry> tree = RTree.create();

You can specify a few parameters to the builder, including minChildren, maxChildren, splitter, selector:

RTree<String, Geometry> tree = RTree.minChildren(3).maxChildren(6).create();

Geometries

The following geometries are supported for insertion in an RTree:

  • Rectangle
  • Point
  • Circle
  • Line

Generic typing

If for instance you know that the entry geometry is always Point then create an RTree specifying that generic type to gain more type safety:

RTree<String, Point> tree = RTree.create();

R*-tree

If you'd like an R*-tree (which uses a topological splitter on minimal margin, overlap area and area and a selector combination of minimal area increase, minimal overlap, and area):

RTree<String, Geometry> tree = RTree.star().maxChildren(6).create();

See benchmarks below for some of the performance differences.

Add items to the R-tree

When you add an item to the R-tree you need to provide a geometry that represents the 2D physical location or extension of the item. The Geometries builder provides these factory methods:

  • Geometries.rectangle
  • Geometries.circle
  • Geometries.point
  • Geometries.line (requires jts-core dependency)

To add an item to an R-tree:

RTree<T,Geometry> tree = RTree.create();
tree = tree.add(item, Geometries.point(10,20));

or

tree = tree.add(Entries.entry(item, Geometries.point(10,20));

Important note: being an immutable data structure, calling tree.add(item, geometry) does nothing to tree, it returns a new RTree containing the addition. Make sure you use the result of the add!

Remove an item in the R-tree

To remove an item from an R-tree, you need to match the item and its geometry:

tree = tree.delete(item, Geometries.point(10,20));

or

tree = tree.delete(entry);

Important note: being an immutable data structure, calling tree.delete(item, geometry) does nothing to tree, it returns a new RTree without the deleted item. Make sure you use the result of the delete!

Geospatial geometries (lats and longs)

To handle wraparounds of longitude values on the earth (180/-180 boundary trickiness) there are special factory methods in the Geometries class. If you want to do geospatial searches then you should use these methods to build Points and Rectangles:

Point point = Geometries.pointGeographic(lon, lat);
Rectangle rectangle = Geometries.rectangleGeographic(lon1, lat1, lon2, lat2);

Under the covers these methods normalize the longitude value to be in the interval [-180, 180) and for rectangles the rightmost longitude has 360 added to it if it is less than the leftmost longitude.

Custom geometries

You can also write your own implementation of Geometry. An implementation of Geometry needs to specify methods to:

  • check intersection with a rectangle (you can reuse the distance method here if you want but it might affect performance)
  • provide a minimum bounding rectangle
  • implement equals and hashCode for consistent equality checking
  • measure distance to a rectangle (0 means they intersect). Note that this method is only used for search within a distance so implementing this method is optional. If you don't want to implement this method just throw a RuntimeException.

For the R-tree to be well-behaved, the distance function if implemented needs to satisfy these properties:

  • distance(r) >= 0 for all rectangles r
  • if rectangle r1 contains r2 then distance(r1)<=distance(r2)
  • distance(r) = 0 if and only if the geometry intersects the rectangle r

Searching

The advantage of an R-tree is the ability to search for items in a region reasonably quickly. On average search is O(log(n)) but worst case is O(n).

Search methods return Observable sequences:

Observable<Entry<T, Geometry>> results =
    tree.search(Geometries.rectangle(0,0,2,2));

or search for items within a distance from the given geometry:

Observable<Entry<T, Geometry>> results =
    tree.search(Geometries.rectangle(0,0,2,2),5.0);

To return all entries from an R-tree:

Observable<Entry<T, Geometry>> results = tree.entries();

Search with a custom geometry

Suppose you make a custom geometry like Polygon and you want to search an RTree<String,Point> for points inside the polygon. This is how you do it:

RTree<String, Point> tree = RTree.create();
Func2<Point, Polygon, Boolean> pointInPolygon = ...
Polygon polygon = ...
...
entries = tree.search(polygon, pointInPolygon);

The key is that you need to supply the intersects function (pointInPolygon) to the search. It is on you to implement that for all types of geometry present in the RTree. This is one reason that the generic Geometry type was added in rtree 0.5 (so the type system could tell you what geometry types you needed to calculate intersection for) .

Search with a custom geometry and maxDistance

As per the example above to do a proximity search you need to specify how to calculate distance between the geometry you are searching and the entry geometries:

RTree<String, Point> tree = RTree.create();
Func2<Point, Polygon, Boolean> distancePointToPolygon = ...
Polygon polygon = ...
...
entries = tree.search(polygon, 10, distancePointToPolygon);

Example

import com.github.davidmoten.rtree.RTree;
import static com.github.davidmoten.rtree.geometry.Geometries.*;

RTree<String, Point> tree = RTree.maxChildren(5).create();
tree = tree.add("DAVE", point(10, 20))
           .add("FRED", point(12, 25))
           .add("MARY", point(97, 125));
 
Observable<Entry<String, Point>> entries =
    tree.search(Geometries.rectangle(8, 15, 30, 35));

Searching by distance on lat longs

See LatLongExampleTest.java for an example. The example depends on grumpy-core artifact which is also on Maven Central.

Another lat long example searching geo circles

See LatLongExampleTest.testSearchLatLongCircles() for an example of searching circles around geographic points (using great circle distance).

What do I do with the Observable thing?

Very useful, see RxJava.

As an example, suppose you want to filter the search results then apply a function on each and reduce to some best answer:

import rx.Observable;
import rx.functions.*;
import rx.schedulers.Schedulers;

Character result = 
    tree.search(Geometries.rectangle(8, 15, 30, 35))
        // filter for names alphabetically less than M
        .filter(entry -> entry.value() < "M")
        // get the first character of the name
        .map(entry -> entry.value().charAt(0))
        // reduce to the first character alphabetically 
        .reduce((x,y) -> x <= y ? x : y)
        // subscribe to the stream and block for the result
        .toBlocking().single();
System.out.println(list);

output:

D

How to configure the R-tree for best performance

Check out the benchmarks below and refer to another benchmark results, but I recommend you do your own benchmarks because every data set will behave differently. If you don't want to benchmark then use the defaults. General rules based on the benchmarks:

  • for data sets of <10,000 entries use the default R-tree (quadratic splitter with maxChildren=4)
  • for data sets of >=10,000 entries use the star R-tree (R*-tree heuristics with maxChildren=4 by default)
  • use STR bulk loaded R-tree (quadratic splitter or R*-tree heuristics) for large (where index creation time is important) or static (where insertion and deletion are not frequent) data sets

Watch out though, the benchmark data sets had quite specific characteristics. The 1000 entry dataset was randomly generated (so is more or less uniformly distributed) and the Greek dataset was earthquake data with its own clustering characteristics.

What about memory use?

To minimize memory use you can use geometries that store single precision decimal values (float) instead of double precision (double). Here are examples:

// create geometry using double precision 
Rectangle r = Geometries.rectangle(1.0, 2.0, 3.0, 4.0);

// create geometry using single precision
Rectangle r = Geometries.rectangle(1.0f, 2.0f, 3.0f, 4.0f);

The same creation methods exist for Circle and Line.

How do I just get an Iterable back from a search?

If you are not familiar with the Observable API and want to skip the reactive stuff then here's how to get an Iterable from a search:

Iterable<T> it = tree.search(Geometries.point(4,5))
                     .toBlocking().toIterable();

Backpressure

The backpressure slow path may be enabled by some RxJava operators. This may slow search performance by a factor of 3 but avoids possible out of memory errors and thread starvation due to asynchronous buffering. Backpressure is benchmarked below.

Visualizer

To visualize the R-tree in a PNG file of size 600 by 600 pixels just call:

tree.visualize(600,600)
    .save("target/mytree.png");

The result is like the images in the Features section above.

Visualize as text

The RTree.asString() method returns output like this:

mbr=Rectangle [x1=10.0, y1=4.0, x2=62.0, y2=85.0]
  mbr=Rectangle [x1=28.0, y1=4.0, x2=34.0, y2=85.0]
    entry=Entry [value=2, geometry=Point [x=29.0, y=4.0]]
    entry=Entry [value=1, geometry=Point [x=28.0, y=19.0]]
    entry=Entry [value=4, geometry=Point [x=34.0, y=85.0]]
  mbr=Rectangle [x1=10.0, y1=45.0, x2=62.0, y2=63.0]
    entry=Entry [value=5, geometry=Point [x=62.0, y=45.0]]
    entry=Entry [value=3, geometry=Point [x=10.0, y=63.0]]

Serialization

Release 0.8 includes flatbuffers support as a serialization format and as a lower performance but lower memory consumption (approximately one third) option for an RTree.

The greek earthquake data (38,377 entries) when placed in a default RTree with maxChildren=10 takes up 4,548,133 bytes in memory. If that data is serialized then reloaded into memory using the InternalStructure.FLATBUFFERS_SINGLE_ARRAY option then the RTree takes up 1,431,772 bytes in memory (approximately one third the memory usage). Bear in mind though that searches are much more expensive (at the moment) with this data structure because of object creation and gc pressures (see benchmarks). Further work would be to enable direct searching of the underlying array without object creation expenses required to match the current search routines.

As of 5 March 2016, indicative RTree metrics using flatbuffers data structure are:

  • one third the memory use with log(N) object creations per search
  • one third the speed with backpressure (e.g. if flatMap or observeOn is downstream)
  • one tenth the speed without backpressure

Note that serialization uses an optional dependency on flatbuffers. Add the following to your pom dependencies:

<dependency>
    <groupId>com.google.flatbuffers</groupId>
    <artifactId>flatbuffers-java</artifactId>
    <version>2.0.3</version>
    <optional>true</optional>
</dependency>

Serialization example

Write an RTree to an OutputStream:

RTree<String, Point> tree = ...;
OutputStream os = ...;
Serializer<String, Point> serializer = 
  Serializers.flatBuffers().utf8();
serializer.write(tree, os); 

Read an RTree from an InputStream into a low-memory flatbuffers based structure:

RTree<String, Point> tree = 
  serializer.read(is, lengthBytes, InternalStructure.SINGLE_ARRAY);

Read an RTree from an InputStream into a default structure:

RTree<String, Point> tree = 
  serializer.read(is, lengthBytes, InternalStructure.DEFAULT);

Dependencies

As of 0.7.5 this library does not depend on guava (>2M) but rather depends on guava-mini (11K). The nearest search used to depend on MinMaxPriorityQueue from guava but now uses a backport of Java 8 PriorityQueue inside a custom BoundedPriorityQueue class that gives about 1.7x the throughput as the guava class.

How to build

git clone https://github.com/davidmoten/rtree.git
cd rtree
mvn clean install

How to run benchmarks

Benchmarks are provided by

mvn clean install -Pbenchmark

Coverity scan

This codebase is scanned by Coverity scan whenever the branch coverity_scan is updated.

For the project committers if a coverity scan is desired just do this:

git checkout coverity_scan
git pull origin master
git push origin coverity_scan

Notes

The Greek data referred to in the benchmarks is a collection of some 38,377 entries corresponding to the epicentres of earthquakes in Greece between 1964 and 2000. This data set is used by multiple studies on R-trees as a test case.

Results

These were run on i7-920 @2.67GHz with rtree version 0.8-RC7:

Benchmark                                                               Mode  Cnt        Score       Error  Units

defaultRTreeInsertOneEntryInto1000EntriesMaxChildren004                thrpt   10   262260.993 ±  2767.035  ops/s
defaultRTreeInsertOneEntryInto1000EntriesMaxChildren010                thrpt   10   296264.913 ±  2836.358  ops/s
defaultRTreeInsertOneEntryInto1000EntriesMaxChildren032                thrpt   10   135118.271 ±  1722.039  ops/s
defaultRTreeInsertOneEntryInto1000EntriesMaxChildren128                thrpt   10   315851.452 ±  3097.496  ops/s
defaultRTreeInsertOneEntryIntoGreekDataEntriesMaxChildren004           thrpt   10   278761.674 ±  4182.761  ops/s
defaultRTreeInsertOneEntryIntoGreekDataEntriesMaxChildren010           thrpt   10   315254.478 ±  4104.206  ops/s
defaultRTreeInsertOneEntryIntoGreekDataEntriesMaxChildren032           thrpt   10   214509.476 ±  1555.816  ops/s
defaultRTreeInsertOneEntryIntoGreekDataEntriesMaxChildren128           thrpt   10   118094.486 ±  1118.983  ops/s
defaultRTreeSearchOf1000PointsMaxChildren004                           thrpt   10  1122140.598 ±  8509.106  ops/s
defaultRTreeSearchOf1000PointsMaxChildren010                           thrpt   10   569779.807 ±  4206.544  ops/s
defaultRTreeSearchOf1000PointsMaxChildren032                           thrpt   10   238251.898 ±  3916.281  ops/s
defaultRTreeSearchOf1000PointsMaxChildren128                           thrpt   10   702437.901 ±  5108.786  ops/s
defaultRTreeSearchOfGreekDataPointsMaxChildren004                      thrpt   10   462243.509 ±  7076.045  ops/s
defaultRTreeSearchOfGreekDataPointsMaxChildren010                      thrpt   10   326395.724 ±  1699.043  ops/s
defaultRTreeSearchOfGreekDataPointsMaxChildren032                      thrpt   10   156978.822 ±  1993.372  ops/s
defaultRTreeSearchOfGreekDataPointsMaxChildren128                      thrpt   10    68267.160 ±   929.236  ops/s
rStarTreeDeleteOneEveryOccurrenceFromGreekDataChildren010              thrpt   10   211881.061 ±  3246.693  ops/s
rStarTreeInsertOneEntryInto1000EntriesMaxChildren004                   thrpt   10   187062.089 ±  3005.413  ops/s
rStarTreeInsertOneEntryInto1000EntriesMaxChildren010                   thrpt   10   186767.045 ±  2291.196  ops/s
rStarTreeInsertOneEntryInto1000EntriesMaxChildren032                   thrpt   10    37940.625 ±   743.789  ops/s
rStarTreeInsertOneEntryInto1000EntriesMaxChildren128                   thrpt   10   151897.089 ±   674.941  ops/s
rStarTreeInsertOneEntryIntoGreekDataEntriesMaxChildren004              thrpt   10   237708.825 ±  1644.611  ops/s
rStarTreeInsertOneEntryIntoGreekDataEntriesMaxChildren010              thrpt   10   229577.905 ±  4234.760  ops/s
rStarTreeInsertOneEntryIntoGreekDataEntriesMaxChildren032              thrpt   10    78290.971 ±   393.030  ops/s
rStarTreeInsertOneEntryIntoGreekDataEntriesMaxChildren128              thrpt   10     6521.010 ±    50.798  ops/s
rStarTreeSearchOf1000PointsMaxChildren004                              thrpt   10  1330510.951 ± 18289.410  ops/s
rStarTreeSearchOf1000PointsMaxChildren010                              thrpt   10  1204347.202 ± 17403.105  ops/s
rStarTreeSearchOf1000PointsMaxChildren032                              thrpt   10   576765.468 ±  8909.880  ops/s
rStarTreeSearchOf1000PointsMaxChildren128                              thrpt   10  1028316.856 ± 13747.282  ops/s
rStarTreeSearchOfGreekDataPointsMaxChildren004                         thrpt   10   904494.751 ± 15640.005  ops/s
rStarTreeSearchOfGreekDataPointsMaxChildren010                         thrpt   10   649636.969 ± 16383.786  ops/s
rStarTreeSearchOfGreekDataPointsMaxChildren010FlatBuffers              thrpt   10    84230.053 ±  1869.345  ops/s
rStarTreeSearchOfGreekDataPointsMaxChildren010FlatBuffersBackpressure  thrpt   10    36420.500 ±  1572.298  ops/s
rStarTreeSearchOfGreekDataPointsMaxChildren010WithBackpressure         thrpt   10   116970.445 ±  1955.659  ops/s
rStarTreeSearchOfGreekDataPointsMaxChildren032                         thrpt   10   224874.016 ± 14462.325  ops/s
rStarTreeSearchOfGreekDataPointsMaxChildren128                         thrpt   10   358636.637 ±  4886.459  ops/s
searchNearestGreek                                                     thrpt   10     3715.020 ±    46.570  ops/s

There is a related project rtree-benchmark that presents a more comprehensive benchmark with results and analysis on this rtree implementation.

More Repositories

1

rxjava-jdbc

Efficient execution and functional composition of database calls using jdbc and RxJava Observables
Java
804
star
2

geo

Geohash utitlies in java
Java
399
star
3

rxjava2-jdbc

RxJava2 integration with JDBC including Non-blocking Connection Pools
Java
386
star
4

rxjava-extras

Utilities for use with rxjava
Java
269
star
5

rxjava2-extras

Utilities for use with RxJava 2
Java
167
star
6

xsd-forms

Generates web forms from xml schema documents (xsd)
HTML
134
star
7

state-machine

Finite state machine class generator for java, exports graphml, supports immutability!
Java
124
star
8

hilbert-curve

Java utilities for transforming distance along N-dimensional Hilbert Curve to a point and back. Also supports range splitting queries on the Hilbert Curve.
Java
93
star
9

rxjava-file

RxJava observables for files including NIO events
Java
83
star
10

big-sorter

Java library that sorts very large files of records by splitting into smaller sorted files and merging
Java
74
star
11

rtree2

Immutable in-memory R-Tree and R*-Tree for Java with Iterable API
Java
71
star
12

openapi-to-plantuml

Converts OpenAPI 3.0 definitions to Plant UML text for visualisation of your API.
Java
56
star
13

flatbuffers

Maven artifacts containing compiled flatbuffers binaries and flatbuffers-java runtime library
Java
53
star
14

jenkins-ec2-https

How to setup Jenkins CI on EC2 with https access
Shell
53
star
15

predict4java

java library for satellite position prediction
Java
44
star
16

rtree-multi

Java library implementing immutable R-tree and R*-tree for n dimensions
Java
43
star
17

sparse-hilbert-index

Java library to create and search random access files (including in S3) using the space-filling hilbert index (sparse)
Java
40
star
18

java-builder-pattern-tricks

Tricks to use with the java builder pattern
40
star
19

cake-pattern

Examples of cake pattern in scala for injecting singleton and non-singleton dependencies
Scala
34
star
20

bplustree

B+-tree in java that stores to disk using memory mapped files, supports range queries and duplicate keys
Java
33
star
21

rtree-3d

3D R-Tree in java
Java
32
star
22

jax-maven-plugin

maven plugin support for xjc, wsimport, wsgen, schemagen for Java 8,9,10,11+
Java
31
star
23

websockets-log-tail

Follow a stream (like a log file) from a server in the browser.
Java
28
star
24

grumpy

OGC WMS server allowing custom rendered layers in java
Java
28
star
25

odata-client

Java client generator for a service described by OData CSDL 4.0 metadata. Includes Microsoft Graph clients (v1.0 and Beta), Graph Explorer client, Analytics for DevOps, Dynamics CRM clients
Java
28
star
26

word-wrap

Java library for word wrapping text including streaming and custom stringWidth
Java
27
star
27

aws-maven-plugin

Deploys resources to AWS using maven
Java
27
star
28

rxjava-slf4j

Logging utilities for use with RxJava
Java
25
star
29

aws-lightweight-client-java

A lightweight java client for the AWS API. Signs requests with AWS Version 4 and offers helpful builders.
Java
25
star
30

rxjava2-http

Transmit RxJava2 Flowable over http with non-blocking backpressure
Java
18
star
31

xuml-tools

Executable UML tools (xml schema, java model compiler, java + javascript model viewer) based on miUML metamodels
Java
16
star
32

reels

Actor framework for Java, non-blocking, performant
Java
16
star
33

audio-recognition

Matches audio to small vocabulary using fast fourier transforms
Java
15
star
34

rxjava2-aws

RxJava 2 utilities for use with AWS especially SQS, S3
Java
13
star
35

rxjava2-file

Java
13
star
36

kool

j.u.s.Stream alternative (synchronous only), reusable, faster, more operators, easier to use.
Java
13
star
37

guava-mini

Optional, Preconditions, Objects, Lists, Sets classes taken from guava
Java
10
star
38

jns

3D Navier-stokes solver for incompressible fluids using java 8 for regions including obstacles and surface
Java
10
star
39

ppk

Concise Public Private Key (PKCS) encryption utilities in java
Java
9
star
40

io-extras

IO java utilities, OutputStream as InputStream, BoundedBufferedReader
Java
9
star
41

functional-jpa

Functional style java helpers for jpa and guava
Java
9
star
42

rxjava-web-server

playing around with using Observables in a simple web server
Java
9
star
43

rxjava-aws

RxJava 1.x utilities for AWS (SQS, S3, ...)
Java
9
star
44

xjc-maven-plugin

Supports Java 8,9,10,11+, generates code from DTD or XSD
Java
8
star
45

bigsort

Uses RxJava to sort an arbitrarily large stream by serializing to temporary files and merging
Java
7
star
46

space-invaders-opengl

Runs the space invaders LWJGL demo as a main or an applet
Java
7
star
47

rxjava3-jdbc

Java
7
star
48

openapi-to-plantuml-aws-api

HTML
6
star
49

davidmoten.github.io

apidocs and other documentation
HTML
6
star
50

big-sorter-example

Demo maven project with big-sorter dependency and sample csv sort
Java
5
star
51

viem

Volatile Identifier Entity Matching (VIEM) algorithm and java library
Java
5
star
52

logan

Java webapp for time series analysis of log files
JavaScript
5
star
53

java-script-template

Template for a bash script that compiles and runs java commands
Shell
5
star
54

aws-helper

Type-safety additions for Java AWS Lambda in API Gateway context
Java
5
star
55

tile-joiner

Renders map service tiles to a BufferedImage in java and thence to a PNG for instance
Java
5
star
56

entity-tracking-in-memory

Matches timestamped geospatial position reports to entities in an in-memory dataset and maintains identifier uniqueness
Java
5
star
57

openapi-codegen

Java code generator from OpenAPI definition file
Java
5
star
58

one-time-link

Java webapp for creating one-time read links to encrypted information stored on the server file system
Java
4
star
59

http-test-server

Java
4
star
60

maven-s3-repo

Read from an S3-backed maven repository using standard http wagon authentication and serverless architecture
Java
4
star
61

plantuml-maven-plugin

Maven plugin for generating diagram images from PlantUML files
Java
4
star
62

decrypt-maven-plugin

Decrypts server passwords read from .m2/settings.xml
Java
4
star
63

java-data-structures

Practice implementations of some common data structures and algorithms in java
Java
4
star
64

low-mem

How to create low memory usage classes in java
Java
4
star
65

microsoft-dynamics-finance-client

Java client for Microsoft Dynamcis Finance and Operations API
Java
4
star
66

sonatype-parent

Parent pom.xml to ease deployment to Maven Central
4
star
67

java-builder2

Generate complex builder code using java code
Java
3
star
68

java-builder

Generate java builder pattern from a list of variable declarations
Java
3
star
69

rxjava3-pool

Java
3
star
70

api-gateway-java-lambda-cf-example

Example of integration of api gateway and java lambda using cloud-formation
Java
3
star
71

embedded-queue

Java
3
star
72

rxjava2-json

RxJava2 utitilies for consuming streaming json
Java
3
star
73

more-executors

More performant Java Executors
Java
3
star
74

timesheet

timesheet web application
Java
3
star
75

gedcom

Scala library to parse GEDCOM files (common genealogy format)
Scala
3
star
76

rxjava-extras-java-8

Utilities for use with RxJava 1.x and Java 8
Java
2
star
77

rxjava-parallel

implements a ParallelObservable as an experiment
Java
2
star
78

junit-extras

Utilities for use with junit
Java
2
star
79

rxjava-marble-template

Inkscape svg template mimicking rxjava style marble diagrams
2
star
80

beanstalk-template

Beanstalk java servlet application that supports client certificate authentication (load-balanced)
Java
2
star
81

git-properties-maven-plugin

Maven plugin to write a git.properties file to an output directory and to set maven properties for use in pom.xml
Java
2
star
82

jetty-demo

A demonstration webapp that can be started using mvn jetty:run
JavaScript
2
star
83

jks-util

Utilities for manipulating JKS files
Java
2
star
84

mp4-splicer

Java based tool for chopping and concatenating h264 video in mp4 containers
Java
2
star
85

c-vs-java

Performance comparison on 2D array of Java and C
Java
2
star
86

entity-tracking

Geopositional entity tracking using geohashing for queries
Java
1
star
87

log-analysis

superseded by logan
JavaScript
1
star
88

log-metrics

Detects changes to log files and parses logs to extract and publish metrics
Java
1
star
89

as-none-before

ASN.1 java compiler
GAP
1
star
90

pulley

Fiddling around with reactive pull in Java
Java
1
star
91

ets

Entity Tracking System
1
star
92

school-class-partitions

Algorithm discussion on splitting a group into classes while optimizing friend preferences, gender split, and exclusions
1
star
93

practice

miscellaneous algorithm practice
Java
1
star
94

mandelbrot

Generates a movie of a mandelbrot set zoom-in
Java
1
star
95

state-diagram-viewer

playing with GraphStream library for graph visualisation particularly a UML State Diagram
1
star
96

android-scala-sample

Android app using scala built with maven
Scala
1
star
97

github-stars

Service deployed to AWS API Gateway and Lambda using CF to cache github star counts
Java
1
star
98

geotemporal

Java based utilities supporting geo-temporal searching
Java
1
star
99

latex-renderer

Renders latex to png and other
Java
1
star
100

xuml-compiler

Automatically exported from code.google.com/p/xuml-compiler
Java
1
star