• Stars
    star
    5,561
  • Rank 7,365 (Top 0.2 %)
  • Language
    CSS
  • License
    Apache License 2.0
  • Created almost 5 years ago
  • Updated 5 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Python library for converting Python calculations into rendered latex.

Coverage Status


Covert art by Joshua Hoiberg

handcalcs:
Python calculations in Jupyter,
as though you wrote them by hand.

handcalcs is a library to render Python calculation code automatically in Latex, but in a manner that mimics how one might format their calculation if it were written with a pencil: write the symbolic formula, followed by numeric substitutions, and then the result.

Because handcalcs shows the numeric substitution, the calculations become significantly easier to check and verify by hand.

Contents

Basic Demo

handcalcs demo 1

Installing

You can install using pip:

pip install handcalcs

Basic Usage 1: As a Jupyter cell magic (%%render)

handcalcs is intended to be used with either Jupyter Notebook or Jupyter Lab as a cell magic.

First, import the module and run the cell:

import handcalcs.render

Note: This will import both %%tex and %%render magics in the Jupyter Notebook.

Then, in any cell that you want to render with handcalcs, just use the render cell magic at the top of your cell:

%%render

For example:

%%render
a = 2
b = 3
c = 2*a + b/3

That is it!

Once rendered, you can then export your notebook as a PDF, provided you have a Latex environment installed on your system. If you are new to working with Latex and would like to install it on your system so you can use this functionality, please see the section Installing Tex, in the wiki.

You can also use the %%tex command to convert any Python code snippet into a valid LaTex. For Example:

First import handcalcs. We are also importing a few properties/functions from math package for the example below.

import handcalcs.render
from math import sqrt, pi

Now, you can use the %%tex magic!

%%tex
a = 2 / 3 * sqrt(pi)

This will produce a LaTeX output as follows.

\[
\begin{aligned}
a &= \frac{ 2 }{ 3 } \cdot \sqrt{ \pi } = \frac{ 2 }{ 3 } \cdot \sqrt{ 3.142 } &= 1.182
\end{aligned}
\]

Basic Usage 2: As a decorator on your functions, @handcalc()

Shout-out to @eriknw for developing innerscope and proactively integrating it into handcalcs. Thank you!

Start by importing the @handcalc() decorator:

from handcalcs.decorator import handcalc
@handcalc([override: str = "", precision: int = 3, left: str = "", right: str = "", jupyter_display: bool = False])

Returns a tuple consisting of (latex_code: str, locals: dict), where locals is a dictionary of all variables in the scope of the function namespace.

  • override is a str representing one of the acceptable override tags (see below)
  • precision is an int to alter the of decimal precision displayed
  • left and right are strings that can precede and follow the encoded Latex string, such as \\[ and \\] or $ and $
  • jupyter_display, when True, will return only the locals dictionary and instead will display the encoded Latex string rendering with display(Latex(latex_code)) from IPython.display. Will return an error if not used within

In your decorated function, everything between def my_calc(...) and a return statement (if any) is now like the code in a Jupyter cell, except it's a standard Python function.

Used in this way, you can use @handcalc() to dynamically generate Latex code for display in Jupyter and non-Jupypter Python environments (e.g. streamlit).

Parameters

Override tags

handcalcs makes certain assumptions about how you would like your calculation formatted and does not allow for a great deal of customization in this regard. However, there are currently four customizations you can make using # override tags as an argument after the %%render cell magic. Additionally, you can also specify the number of decimals of precision to display. You can only use one override tag per cell but you can combine an override tag with a precision setting.

Override tags can be used with both the Jupyter cell magic and the function decorator. To use a override tag with the decorator, you just supply it as an argument, e.g. @handcalc(override='params', precision=2)

I will compare a basic rendering of the quadratic formula (below) with the change achieved with each override tag.

Basic rendering:

Parameters


params:

handcalcs renders lines of code vertically, one after the other. However, when you are assigning variables, or displaying resulting variables, you may not want to waste all of that vertical space.

Using the params override tag, your list of parameters will instead render in three columns, thereby saving vertical space. Additionally, onsly the result will be shown, no calculations.

Params override example


Adjust precision:

The number of decimal places in a cell can be adjusted by providing an integer after %%render to indicate the decimal precision to be displayed. Can be combined with another override tag.

Precision override example


long and short:

To save vertical space, handcalcs attempts to figure out how long your calculation is and, if it is short enough, renders it out fully on one line.

If handcalcs's internal test deems the calculation as being too long to fit onto one line, it breaks it out into multiple lines.

Use the # long or # short override tags to override the length check and display the calculation in the "Long" format or the "Short" format for all calculations in the cell. e.g.

long: Spans multiple lines as though you had a long equation

Long override example

short: Forced to a single line as though you had a short equation

    # Format for "short" calculations (can fit on one line):
    c = 2*a + b/3 = 2*(2) + (3)/3 = 5

    # Format for "long" calculations (requires multi-line format)
    c = 2*a + b/3
      = 2*(2) + (3)/3
      = 5

Short override example


symbolic

The primary purpose of handcalcs is to render the full calculation with the numeric substitution. This allows for easy traceability and verification of the calculation.

However, there may be instances when it is preferred to simply display calculations symbolically. For example, you can use the symbolic tag to use handcalcs as a fast way to render Latex equations symbolically.

Alternatively, you may prefer to render out all of input parameters in one cell, your formulae symbolically in the following cell, and then all the final values in the last cell, skipping the numeric substitution process entirely.

Keep in mind that even if you use the symbolic tag with your calculations, you still need to declare those variables (by assigning values to them) ahead of time in order for your calculation to be valid Python.

Short override example


sympy

This is intended to be used only with sympy loaded. Sympy allows for symbolic manipulation, solving, and integration of algebraic expressions. Sympy will render its own objects in Latex without handcalcs.

If you are manipulating a sympy expression or sympy equation for the purpose of calculation, you can use handcalcs to handle the substitution and calculation of your resulting expression.

Note: Re-assigning your symbolic variables to numbers will clobber them as sympy variables. However, you are done with these now, right? So, it's no problem. If you need to work symbolically again, just re-run your notebook cells from the top.

Sympy demo


Units Packages Compatibility

handcalcs was designed to be used with the units package, forallpeople (and forallpeople was designed to be compatible with handcalcs). However, it has been recently reported that pint can work to good effect, also.

display variable demo

For potential compatibility with other units packages, please see the wiki.


Features

Quickly display the values of many variables

No more print statements needed. Just plop your variables onto a line and they will all be displayed.

display variable demo

Get Just the Latex Code, without the render

If you just want to generate the rendered Latex code directly to use in your own Latex files, you can use the %%tex cell magic instead:

%%tex
a = 2
b = 3
c = 2*a + b/3

Then you can just copy and paste the result into your own LaTeX document.

tex cell magic demo


Subscripts (and sub-subscripts, etc.)

Subscripts in variable names are automatically created when _ is used in the variable name. Sub-subscripts are nested for each separate _ used in series.

Subscripts demo


Greek symbols

Any variable name that contains a Greek letter (e.g. "pi", "upsilon", "eta", etc.) as a string or substring will be replaced by the appropriate Latex code to represent that Greek letter.

symbol substitution symbol substitution
alpha Ξ± Alpha Ξ‘
beta Ξ² Beta Ξ’
gamma Ξ³ Gamma Ξ“
delta Ξ΄ Delta Ξ”
epsilon Ξ΅ Epsilon Ξ•
zeta ΞΆ Zeta Ξ–
eta Ξ· Eta Ξ—
theta θ Theta Θ
iota ΞΉ Iota Ξ™
kappa κ Kappa Κ
lamb Ξ» Lamb Ξ›
mu μ Mu Μ
nu Ξ½ Nu N
xi ξ Xi Ξ
omicron ο Omicron Ο
pi Ο€ Pi Ξ 
rho ρ Rho Α
sigma Οƒ Sigma Ξ£
tau Ο„ Tau Ξ€
upsilon Ο… Upsilon Ξ₯
phi Ο† Phi Ξ¦
chi Ο‡ Chi Ξ§
psi ψ Psi Ψ
omega Ο‰ Omega Ξ©
  • Using lower case letters as your variable name will make a lower case Greek letter.

  • Using a Capitalized Name for your variable will render it as an upper case Greek letter.

Greek symbols demo


Functions, built-in or custom

If you are using Python functions in your calculation, eg. min() or tan(), they will be replaced with Latex code to represent that function in Latex.

If you are creating your own functions, then they will be rendered in Latex as a custom operator.

If you are using a function with the name sqrt (whether your own custom implementation or from math.sqrt), then it will be rendered as the radical sign.

Functions


Rendered in-line Comments

Any comments placed after a line of calculation will be rendered as an inline comment in the Latex.

This makes it convenient to make notes along side your calculations to briefly explain where you may have acquired or derived a particular value.

Comments


Skip the substitution

Any calculation entirely wrapped in parentheses, (), will be rendered as just param = result, without the substitution.

This can be convient when you want to calculate a parameter on the fly and not have it be the focus of the calculation.

Skip the substitution


Conditional statements

Many calculations in the "real world" are dependent on context.

handcalcs allows for the inclusion of some simple conditional statements into its code in a way that makes it easier to understand the context of the calculation.

Conditional calculations

Note: Multiple "lines" of calculations can be used after the conditional expression provided that they are all on the same line and separated with ";". See Expected Behaviours for more context.


Numeric integration

You can use scipy.quad to perform numeric integration on a pre-defined function and have handcalcs perform a basic rendering of it.

This behaviour is triggered if you use a function with either integrate or quad in the name.

Numeric integration


"Prime" notation

Sometimes you need to write "prime" on your variables:

Prime Notation


PDF Printing in Jupyter

Note: With nbconvert v6.0, installing templates (as shown in older YouTube videos) is no longer required. An Exporter for Jupyter Notebook/Lab is installed when handcalcs is installed which gives you access to two new File -> Save and Export as options:

  1. Export HTML_NoInput
  2. Export LaTeX_NoInput
  3. Export PDF_NoInput

These options suppress all input cells so you only see rendered outputs in your Jupyter notebooks.

By using these three options, you can create PDF exports either by HTML (and then PDF print from your browser) or via LaTex (whether directly or through your own LaTeX environment).


Expected Behaviours

handcalcs is intended to render arithmetical calculations written in Python code. It is not intended to render arbitrary Python into Latex.

Given that, handcalcs only renders a small subset of Python and there is a lot that will not work, especially anything that happens over multiple lines (e.g. function definitions, for loops, with statements, etc.).

handcalcs works by parsing individual lines of Python within a cell. It does not parse the cell as a whole. Therefore all statements to be rendered must be contained on a single line.

Accepted datatypes

handcalcs will make an attempt to render all datatypes. However, it cannot yet render all "collection" based data types, e.g. list and dict. If you are using a collection to hold argument functions, e.g. sum((23, 123, 45)), use a tuple to ensure it is rendered properly. Alternatively, you can use one-dimensional numpy arrays (vectors) with handcalcs.

Objects are rendered into Latex by two main approaches:

  1. If the object has a _repr_latex_() method defined, then that method is used.

    a) If the object has some alternate method for rendering itself into Latex code, e.g. .latex() or .to_latex(), that will be attempted as well.

    In order for the representation to be rendered properly, the object's Latex represention must use commands that are implemented with MathJax and/or Katex.

  2. If the object does not have a Latex method, then str() is used.

If you are using object types which have str methods that render as <MyObject: value=34>, then that's what the Latex interpreter will see and attempt to render.

Arithmetic operators

  • + renders as +
  • - renders as -
  • * renders as the "dot operator" (Latex: \cdot)
  • / always renders as a fraction
  • ** renders as superscripts
  • % renders as the "mod function" (Latex: \mod)

Currently // is not rendered but you can easily use math.floor as a function instead (as floor).

for loops and other iterations

Showing rendered iterations is not supported. The intention for use is that you perform your iterations in a cell that is not rendered and then, once the iteration has produced the desired resulting value, you render the result in a separate cell.

Gotchas

Because handcalcs is designed for use within the Jupyter environment, and because Jupyter cells can be run out of order, there exists the possibility of having a big mess of beautifully rendered but completely incorrect calculations if you re-use variable names throughout your notebook.

handcalcs uses the notebook's user namespace dictionary to look up values for all variables in the namespace. If your calculations are re-using variable names throughout the notebook, then the dictionary entry for that name may not be what you think it is when you run cells out of the order originally intended.

You can re-use variable names to good effect throughout a notebook, IFF the cells are run in the correct order (easier if this is just top to bottom).

On this note: if you are using handcalcs for any kind of reporting that may become a legal document (e.g. design engineering calculations), it is up to YOU to ensure that the results are what you expect them to be. handcalcs is free and open-source software and the author(s) are not responsible for incorrect calculations that result from its use.

That being said, the very purpose for the way handcalcs renders its math is to make it very easy to confirm and verify calculations by hand.

YouTube Tutorials

Getting Started with handcalcs (assumes zero Python knowledge)

https://www.youtube.com/watch?v=ZNFhLCWqA_g

Engineering Calculations: handcalcs-on-Jupyter vs. Excel

https://www.youtube.com/watch?v=n9Uzy3Eb-XI

Applications and Compatibility with OPP (Other People's Packages)

** Please see the wiki for applications of handcalcs in education and engineering, in addition to examples of using handcalcs with other Python libraries such streamlit and papermill.

More Repositories

1

forallpeople

Python SI units library: your 'daily driver' for calculations.
Python
285
star
2

tuplevector

Python library to perform vector math on standard tuples and namedtuples.
Python
10
star
3

structural_python

Notebooks, snippets, and code used in the Structural Python videos
Jupyter Notebook
4
star
4

nbengineer

A collection of handy utilities for Jupyter aimed towards an engineering workflow
3
star
5

Lesson_01

Jupyter Notebook
2
star
6

python_course_admin

Admin module for python course
Jupyter Notebook
2
star
7

handcalcs_nbconvert_exporter_old

nbconvert exporters for handcalcs
Jupyter Notebook
2
star
8

Lesson_10

Lesson 10 of Python Course
Jupyter Notebook
2
star
9

Workbook_09

Python course Workbook 09
Jupyter Notebook
1
star
10

Workbook_07

Jupyter Notebook
1
star
11

Workbook_05_Solution

Solution for Workbook 05
Jupyter Notebook
1
star
12

fdf_to_shapely

Converts annotation objects in an FDF file into shapely geometry via WKT strings
Jupyter Notebook
1
star
13

Lesson_04.5

Lesson 4 1/2
Jupyter Notebook
1
star
14

Workbook_05

Python course - Workbook 05
Jupyter Notebook
1
star
15

aisc_db

A library/application to select W-sections from teh AISC db
Python
1
star
16

Workbook_08

Jupyter Notebook
1
star
17

Workbook_06_Solution

Jupyter Notebook
1
star
18

cookiecutter-structuralpython

A cookiecutter for starting projects based on the tools I currently prefer to use
1
star
19

Workbook_04_Solution

Solution for Workbook 04
Jupyter Notebook
1
star
20

Lesson_02

Jupyter Notebook
1
star
21

Lesson_04

Jupyter Notebook
1
star
22

Lesson_08

Jupyter Notebook
1
star
23

Workbook_02

Python course - Workbook 02
Jupyter Notebook
1
star
24

Workbook_07_Solution

Solution for Workbook 07
Jupyter Notebook
1
star
25

Workbook_03

Python Course - Workbook 03
Jupyter Notebook
1
star
26

Lesson_06

Jupyter Notebook
1
star
27

Workbook_03_Solution

Solution for Workbook 03
Jupyter Notebook
1
star
28

Workbook_08_Solution

Workbook 08 Solution
Jupyter Notebook
1
star
29

Lesson_04_Advanced_Topics

Some advanced topics pertaining to the material in Lesson 04
Jupyter Notebook
1
star
30

loadfactors

NBCC2020 Calcas
Python
1
star
31

Lesson_05

Jupyter Notebook
1
star
32

Minor_Project_PFSE

Python
1
star
33

Workbook_10

1
star
34

Workbook_06

Python course - Workbook 06
Jupyter Notebook
1
star
35

Workbook_02_Solution

Solution to Workbook 02
Jupyter Notebook
1
star
36

Workbook_04

Python course - Workbook 04
Jupyter Notebook
1
star
37

Workbook_01

Python course - Workbook 01
Jupyter Notebook
1
star
38

jupyterdemofiles

A first repository for students to download to learn about JupyterLab
1
star
39

demo_notebooks

A collection of Notebooks for demonstrations of handcalcs and other libraries
Jupyter Notebook
1
star
40

Lesson_03

Jupyter Notebook
1
star
41

Workbook_01_Solution

Solution to workbook 01
Jupyter Notebook
1
star
42

Lesson_09

Python course, Lesson 09
Jupyter Notebook
1
star
43

Lesson_07

Jupyter Notebook
1
star
44

loadfactors2024eu

An example new repo for distr
Python
1
star
45

loadfactors2024am

Load factoring library for structural engineering
Python
1
star
46

nb-hideinputs

An nbconvert exporter that hides cell inputs (code cells)
Python
1
star