• Stars
    star
    198
  • Rank 196,898 (Top 4 %)
  • Language
    Python
  • Created over 3 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Tweet

Project | Arxiv | YouTube | PWC | PWC

News

  • ⚡(2022-3-5): We released pre-trained models. Download from百度云-BaiDuYun with Fetch code: 7cwt

dataset1

Abstract

In recent years, deep learning-based methods have shown promising results in computer vision area. However, a common deep learning model requires a large amount of labeled data, which is labor-intensive to collect and label. What’s more, the model can be ruined due to the domain shift between training data and testing data. Text recognition is a broadly studied field in computer vision and suffers from the same problems noted above due to the diversity of fonts and complicated backgrounds. In this paper, we focus on the text recognition problem and mainly make three contributions toward these problems. First, we collect a multi-source domain adaptation dataset for text recognition, including five different domains with over five million images, which is the first multi-domain text recognition dataset to our best knowledge. Secondly, we propose a new method called Meta Self-Learning, which combines the self-learning method with the meta-learning paradigm and achieves a better recognition result under the scene of multi domain adaptation. Thirdly, extensive experiments are conducted on the dataset to provide a benchmark and also show the effectiveness of our method.

Data Prepare

Download the dataset from here.

Before using the raw data, you need to convert it to lmdb dataset.

python create_lmdb_dataset.py --inputPath data/ --gtFile data/gt.txt --outputPath result/

The data folder should be organized below

data
├── train_label.txt
└── imgs
    ├── 000000001.png
    ├── 000000002.png
    ├── 000000003.png
    └── ...

The format of train_label.txt should be {imagepath}\t{label}\n For example,

imgs/000000001.png Tiredness
imgs/000000002.png kills
imgs/000000003.png A

Requirements

  • Python == 3.7
  • Pytorch == 1.7.0
  • torchvision == 0.8.1
  • Linux or OSX
  • NVIDIA GPU + CUDA CuDNN (CPU mode and CUDA without CuDNN may work with minimal modification, but untested)

Argument

  • --train_data: folder path to training lmdb dataset.
  • --valid_data: folder path to validation lmdb dataset.
  • --select_data: select training data, examples are shown below
  • --batch_ratio: assign ratio for each selected data in the batch.
  • --Transformation: select Transformation module [None | TPS], in our method, we use None only.
  • --FeatureExtraction: select FeatureExtraction module [VGG | RCNN | ResNet], in our method, we use ResNet only.
  • --SequenceModeling: select SequenceModeling module [None | BiLSTM], in our method, we use BiLSTM only.
  • --Prediction: select Prediction module [CTC | Attn], in our method, we use Attn only.
  • --saved_model: path to a pretrained model.
  • --valInterval: iteration interval for validation.
  • --inner_loop: update steps in the meta update, default is 1.
  • --source_num: number of source domains, default is 4.

Get started

  • Install PyTorch and 0.4+ and other dependencies (e.g., torchvision, visdom and dominate).

    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, you can create a new Conda environment using conda env create -f environment.yml.
  • Clone this repo:

git clone https://github.com/bupt-ai-cz/Meta-SelfLearning.git
cd Meta-SelfLearning

To train the baseline model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python train.py \
    --train_data data/train/ \
    --select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96 --valInterval 5000

To train the meta_train model for synthetic domain using the pretrained model.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python meta_train.py 
    --train_data data/train/ \ 
    --select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/test/syn/ \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96  --source_num 4  \
    --valInterval 5000 --inner_loop 1\
    --saved_model saved_models/pretrained.pth 

To train the pseudo-label model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python self_training.py 
    --train_data data/train \
    —-select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/train/syn \
    --test_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96  --source_num 4 \
    --warmup_threshold 28 --pseudo_threshold 0.9 \
    --pseudo_dataset_num 50000 --valInterval 5000 \ 
    --saved_model saved_models/pretrained.pth 

To train the meta self-learning model for synthetic domain.

OMP_NUM_THREADS=8 CUDA_VISIBLE_DEVICES=0 python meta_self_learning.py 
    --train_data data/train \
    —-select_data car-doc-street-handwritten \
    --batch_ratio 0.25-0.25-0.25-0.25 \
    --valid_data data/train/syn \
    --test_data data/test/syn \
    --Transformation None --FeatureExtraction ResNet \
    --SequenceModeling BiLSTM --Prediction Attn \
    --batch_size 96 --source_num 4 \
    --warmup_threshold 0 --pseudo_threshold 0.9 \
    --pseudo_dataset_num 50000 --valInterval 5000 --inner_loop 1 \
    --saved_model pretrained_model/pretrained.pth 

Citation

If you use this data or code for your research, please cite our paper Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark

@inproceedings{qiu2021meta,
  title={Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark},
  author={Qiu, Shuhao and Zhu, Chuang and Zhou, Wenli},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={1592--1601},
  year={2021}
}

License

This Dataset is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications, or personal experimentation. Permission is granted to use the data given that you agree to our license terms bellow:

  1. That you include a reference to our paper in any work that makes use of the dataset.
  2. That you may not use the dataset or any derivative work for commercial purposes.

Privacy

Part of the data is constructed based on the processing of existing databases. Part of the data is crawled online or captured by ourselves. Part of the data is newly generated. We prohibit you from using the Datasets in any manner to identify or invade the privacy of any person. If you have any privacy concerns, including to remove your information from the Dataset, please contact us.

Contact

Reference

More Repositories

1

LLVIP

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision
Jupyter Notebook
618
star
2

BCI

BCI: Breast Cancer Immunohistochemical Image Generation through Pyramid Pix2pix
Python
146
star
3

HHCL-ReID

Hard-sample Guided Hybrid Contrast Learning for Unsupervised Person Re-Identification
Python
133
star
4

CAC-UNet-DigestPath2019

1st to MICCAI DigestPath2019 challenge (https://digestpath2019.grand-challenge.org/Home/) on colonoscopy tissue segmentation and classification task. (MICCAI 2019) https://teacher.bupt.edu.cn/zhuchuang/en/index.htm
Python
94
star
5

IAST-ECCV2020

IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020) https://teacher.bupt.edu.cn/zhuchuang/en/index.htm
Python
84
star
6

BALNMP

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides, BCNB Dataset
Python
53
star
7

PGDF

Sample Prior Guided Robust Model Learning to Suppress Noisy Labels
Python
31
star
8

HSA-NRL

Hard Sample Aware Noise Robust Learning forHistopathology Image Classification
Python
29
star
9

HIAST

This is the official implementation of "Hard-aware Instance Adaptive Self-training for Unsupervised Cross-domain Semantic Segmentation".
Python
10
star
10

Thyroid-Cytopathological-Diagnosis-with-AMIL_MSFF

Attention Based Multi-Instance Thyroid Cytopathological Diagnosis with Multi-Scale Feature Fusion
Python
9
star
11

TCVC

Code of paper "Temporal Consistent Automatic Video Colorization via Semantic Correspondence"
Python
8
star
12

Glomeruli-Instance-Segmentation

Python
7
star
13

bupt-ai-cz

The introduction and news of CVSM Group.
7
star
14

Label-Noise-Robust-Training

Noise Robust Learning with Hard Example Aware for Pathological Image classification
Python
6
star
15

Thyroid-Nodule-Ultrasound-Image-Classification

Thyroid Nodule Ultrasound Image Classification Through Hybrid Feature Cropping Network
6
star
16

MPFN

Ischemic Stroke Lesion Segmentation Using Multi-Plane Information Fusion
5
star
17

ProML

code for "Semi-supervised Domain Adaptation via Prototype-based Multi-level Learning"
Python
5
star
18

ANRN

Python
5
star
19

IAST-CAC-UNet-LLCNN-BreastCancerCNN-ImageRetrieval_DF_CDVS-Highly_Efficient_Follicular_Segmentation

Codes and Data for CVSM Group: 1. IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020); 2.
4
star
20

WUDA

WUDA
2
star
21

TCNL

Python
1
star
22

SMAF

code for paper “A SELF-TRAINING FRAMEWORK BASED ON MULTI-SCALE ATTENTION FUSION FOR WEAKLY SUPERVISED SEMANTIC SEGMENTATION”
1
star