• Stars
    star
    573
  • Rank 77,865 (Top 2 %)
  • Language
    C++
  • License
    Apache License 2.0
  • Created over 6 years ago
  • Updated almost 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Powerful multi-threaded coroutine dispatcher and parallel execution engine

Quantum Library : A scalable C++ coroutine framework

Build status

Quantum is a full-featured and powerful C++ framework build on top of the Boost coroutine library. The framework allows users to dispatch units of work (a.k.a. tasks) as coroutines and execute them concurrently using the 'reactor' pattern.

Features

  • NEW Added support for simpler V2 coroutine API which returns computed values directly.
  • Header-only library and interface-based design.
  • Full integration with Boost asymmetric coroutine library.
  • Highly parallelized coroutine framework for CPU-bound workloads.
  • Support for long-running or blocking IO tasks.
  • Allows explicit and implicit cooperative yielding between coroutines.
  • Task continuations and coroutine chaining for serializing work execution.
  • Synchronous and asynchronous dispatching using futures and promises similar to STL.
  • Support for streaming futures which allows faster processing of large data sets.
  • Support for future references.
  • Cascading execution output during task continuations (a.k.a. past futures).
  • Task prioritization.
  • Internal error handling and exception forwarding.
  • Ability to write lock-free code by synchronizing coroutines on dedicated queues.
  • Coroutine-friendly mutexes and condition variables for locking critical code paths or synchronizing access to external objects.
  • Fast pre-allocated memory pools for internal objects and coroutines.
  • Parallel forEach and mapReduce functions.
  • Various stats API.
  • Sequencer class allowing strict FIFO ordering of tasks based on sequence ids.

Sample code

Quantum is very simple and easy to use:

using namespace Bloomberg::quantum;

// Define a coroutine
int getDummyValue(CoroContextPtr<int> ctx)
{
    int value;
    ...           //do some work
    ctx->yield(); //be nice and let other coroutines run (optional cooperation)
    ...           //do more work and calculate 'value'
    return ctx->set(value);
}

// Create a dispatcher
Dispatcher dispatcher;

// Dispatch a work item to do some work and return a value
int result = dispatcher.post(getDummyValue)->get();

Chaining tasks can also be straightforward. In this example we produce various types in a sequence.

using namespace Bloomberg::quantum;

// Create a dispatcher
Dispatcher dispatcher;

auto ctx = dispatcher.postFirst([](CoroContextPtr<int> ctx)->int {
    return ctx->set(55); //Set the 1st value
})->then([](CoroContextPtr<double> ctx)->int {
    // Get the first value and add something to it
    return ctx->set(ctx->getPrev<int>() + 22.33); //Set the 2nd value
})->then([](CoroContextPtr<std::string> ctx)->int {
    return ctx->set("Hello world!"); //Set the 3rd value
})->finally([](CoroContextPtr<std::list<int>> ctx)->int {
    return ctx->set(std::list<int>{1,2,3}); //Set 4th value
})->end();

int i = ctx->getAt<int>(0); //This will throw 'FutureAlreadyRetrievedException'
                            //since future was already read in the 2nd coroutine
double d = ctx->getAt<double>(1); //returns 77.33
std::string s = ctx->getAt<std::string>(2); //returns "Hello world!";
std::list<int>& listRef = ctx->getRefAt<std::list<int>>(3); //get list reference
std::list<int>& listRef2 = ctx->getRef(); //get another list reference.
                                          //The 'At' overload is optional for last chain future
std::list<int> listValue = ctx->get(); //get list value

Chaining with the new V2 api:

using namespace Bloomberg::quantum;

// Create a dispatcher
Dispatcher dispatcher;

auto ctx = dispatcher.postFirst([](VoidContextPtr ctx)->int {
    return 55; //Set the 1st value
})->then([](VoidContextPtr ctx)->double {
    // Get the first value and add something to it
    return ctx->getPrev<int>() + 22.33; //Set the 2nd value
})->then([](VoidContextPtr ctx)->std::string {
    return "Hello world!"; //Set the 3rd value
})->finally([](VoidContextPtr ctx)->std::list<int> {
    return {1,2,3}; //Set 4th value
})->end();

Building and installing

Quantum is a header-only library and as such no targets need to be built. To install simply run:

> cmake -Bbuild <options> .
> cd build
> make install

CMake options

Various CMake options can be used to configure the output:

  • QUANTUM_BUILD_DOC : Build Doxygen documentation. Default OFF.
  • QUANTUM_ENABLE_DOT : Enable generation of DOT viewer files. Default OFF.
  • QUANTUM_VERBOSE_MAKEFILE : Enable verbose cmake output. Default ON.
  • QUANTUM_ENABLE_TESTS : Builds the tests target. Default OFF.
  • QUANTUM_BOOST_STATIC_LIBS: Link with Boost static libraries. Default ON.
  • QUANTUM_BOOST_USE_MULTITHREADED : Use Boost multi-threaded libraries. Default ON.
  • QUANTUM_USE_DEFAULT_ALLOCATOR : Use default system supplied allocator instead of Quantum's. Default OFF.
  • QUANTUM_ALLOCATE_POOL_FROM_HEAP : Pre-allocates object pools from heap instead of the application stack. Default OFF.
  • QUANTUM_BOOST_USE_SEGMENTED_STACKS : Use Boost segmented stacks for coroutines. Default OFF.
  • QUANTUM_BOOST_USE_PROTECTED_STACKS : Use Boost protected stacks for coroutines (slow!). Default OFF.
  • QUANTUM_BOOST_USE_FIXEDSIZE_STACKS : Use Boost fixed size stacks for coroutines. Default OFF.
  • QUANTUM_INSTALL_ROOT : Specify custom install path. Default is /usr/local/include for Linux or c:/Program Files for Windows.
  • QUANTUM_PKGCONFIG_DIR : Specify custom install path for the quantum.pc file. Default is ${QUANTUM_INSTALL_ROOT}/share/pkgconfig. To specify a relative path from QUANTUM_INSTALL_ROOT, omit leading /.
  • QUANTUM_EXPORT_PKGCONFIG : Generate quantum.pc file. Default ON.
  • QUANTUM_CMAKE_CONFIG_DIR : Specify a different install directory for the project's config, target and version files. Default is ${QUANTUM_INSTALL_ROOT}/share/cmake.
  • QUANTUM_EXPORT_CMAKE_CONFIG : Generate CMake config, target and version files. Default ON.
  • BOOST_ROOT : Specify a different Boost install directory.
  • GTEST_ROOT : Specify a different GTest install directory.

Note: options must be preceded with -D when passed as arguments to CMake.

Running tests

Run the following from the top directory:

> cmake -Bbuild -DQUANTUM_ENABLE_TESTS=ON <options> .
> cd build
> make quantum_test && ctest

Using

To use the library simply include <quantum/quantum.h> in your application. Also, the following libraries must be included in the link:

  • boost_context
  • pthread

Quantum library is fully is compatible with C++11, C++14 and C++17 language features. See compiler options below for more details.

Compiler options

The following compiler options can be set when building your application:

  • __QUANTUM_PRINT_DEBUG : Prints debug and error information to stdout and stderr respectively.
  • __QUANTUM_USE_DEFAULT_ALLOCATOR : Disable pool allocation for internal objects (other than coroutine stacks) and use default system allocators instead.
  • __QUANTUM_ALLOCATE_POOL_FROM_HEAP : Pre-allocates object pools from heap instead of the application stack (default). This affects internal object allocations other than coroutines. Coroutine pools are always heap-allocated due to their size.
  • __QUANTUM_BOOST_USE_SEGMENTED_STACKS : Uses boost segmented stack for on-demand coroutine stack growth. Note that Boost.Context library must be built with property segmented-stacks=on and applying BOOST_USE_UCONTEXT and BOOST_USE_SEGMENTED_STACKS at b2/bjam command line.
  • __QUANTUM_BOOST_USE_PROTECTED_STACKS : Uses boost protected stack for runtime bound-checking. When using this option, coroutine creation (but not runtime efficiency) becomes more expensive.
  • __QUANTUM_BOOST_USE_FIXEDSIZE_STACKS : Uses boost fixed size stack. This defaults to system default allocator.

Application-wide settings

Various application-wide settings can be configured via ThreadTraits, AllocatorTraits and StackTraits.

Documentation

Please see the wiki page for a detailed overview of this library, use-case scenarios and examples.

For class description visit the API reference page.

More Repositories

1

memray

Memray is a memory profiler for Python
Python
13,044
star
2

blazingmq

A modern high-performance open source message queuing system
C++
2,549
star
3

goldpinger

Debugging tool for Kubernetes which tests and displays connectivity between nodes in the cluster.
JavaScript
2,489
star
4

bde

Basic Development Environment - a set of foundational C++ libraries used at Bloomberg.
C++
1,542
star
5

comdb2

Bloomberg's distributed RDBMS
C
1,340
star
6

pystack

πŸ” 🐍 Like pstack but for Python!
Python
991
star
7

xcdiff

A tool which helps you diff xcodeproj files.
Swift
916
star
8

ipydatagrid

Fast Datagrid widget for the Jupyter Notebook and JupyterLab
TypeScript
510
star
9

ts-blank-space

A small, fast, pure JavaScript type-stripper that uses the official TypeScript parser.
TypeScript
484
star
10

foml

Foundations of Machine Learning
Handlebars
334
star
11

pytest-memray

pytest plugin for easy integration of memray memory profiler
Python
334
star
12

python-github-webhook

A framework for writing webhooks for GitHub, in Python.
Python
276
star
13

chromium.bb

Chromium source code and modifications
267
star
14

koan

A word2vec negative sampling implementation with correct CBOW update.
C++
260
star
15

blpapi-node

Bloomberg Open API module for node.js
C++
243
star
16

chef-bcpc

Bloomberg Clustered Private Cloud distribution
Python
228
star
17

phabricator-tools

Phabricator Tools
Python
221
star
18

scatteract

Project which implements extraction of data from scatter plots
Jupyter Notebook
209
star
19

stricli

Build complex CLIs with type safety and no dependencies
TypeScript
180
star
20

pasta-sourcemaps

Pretty (and) Accurate Stack Trace Analysis is an extension to the JavaScript source map format that allows for accurate function name decoding.
TypeScript
166
star
21

record-tuple-polyfill

A polyfill for the ECMAScript Record and Tuple proposal.
JavaScript
162
star
22

collectdwin

CollectdWin - a system statistics collection daemon for Windows, inspired by 'collectd'
C#
123
star
23

clangmetatool

A framework for reusing code in Clang tools
C++
119
star
24

kubernetes-cluster-cookbook

Ruby
100
star
25

quant-research

A collection of projects published by Bloomberg's Quantitative Finance Research team.
Jupyter Notebook
100
star
26

blpapi-http

HTTP wrapper for Bloomberg Open API
TypeScript
83
star
27

dataless-model-merging

Code release for Dataless Knowledge Fusion by Merging Weights of Language Models (https://openreview.net/forum?id=FCnohuR6AnM)
Python
79
star
28

amqpprox

An AMQP 0.9.1 proxy server, designed for use in front of an AMQP 0.9.1 compliant message queue broker such as RabbitMQ.
C++
74
star
29

ntf-core

Sockets, timers, resolvers, events, reactors, proactors, and thread pools for asynchronous network programming
C++
71
star
30

spire-tpm-plugin

Provides agent and server plugins for SPIRE to allow TPM 2-based node attestation.
Go
70
star
31

bde-tools

Tools for developing and building libraries modeled on BDE
Perl
67
star
32

repofactor

Tools for refactoring history of git repositories
Perl
63
star
33

chef-bach

Chef recipes for Bloomberg's deployment of Hadoop and related components
Ruby
61
star
34

rmqcpp

A batteries included C++ RabbitMQ Client Library/API.
C++
59
star
35

minilmv2.bb

Our open source implementation of MiniLMv2 (https://aclanthology.org/2021.findings-acl.188)
Python
59
star
36

wsk

A straightforward and maintainable build system from the Bloomberg Graphics team.
JavaScript
57
star
37

git-adventure-game

An adventure game to help people learn Git
Shell
54
star
38

attrs-strict

Provides runtime validation of attributes specified in Python 'attr'-based data classes.
Python
52
star
39

cnn-rnf

Convolutional Neural Networks with Recurrent Neural Filters
Python
51
star
40

corokafka

C++ Kafka coroutine library using Quantum dispatcher and wrapping CppKafka
C++
50
star
41

selekt

A Kotlin and familiar Android SQLite database library that uses encryption.
Kotlin
46
star
42

ppx_string_interpolation

PPX rewriter that enables string interpolation in OCaml
OCaml
45
star
43

bde_verify

Tool used to format, improve and verify code to BDE guidelines
C++
42
star
44

vault-auth-spire

vault-auth-spire is an authentication plugin for Hashicorp Vault which allows logging into Vault using a Spire provided SVID.
Go
41
star
45

spark-flow

Library for organizing batch processing pipelines in Apache Spark
Scala
41
star
46

startup-python-bootcamp

35
star
47

p1160

P1160 Add Test Polymorphic Memory Resource To Standard Library
C++
35
star
48

bbit-learning-labs

Learning labs curated by BBIT
JavaScript
34
star
49

chef-umami

A tool to automatically generate test code for Chef cookbooks and policies.
Ruby
33
star
50

pycsvw

A tool to read CSV files with CSVW metadata and transform them into other formats.
Python
32
star
51

bde-allocator-benchmarks

A set of benchmarking tools used to quantify the performance of BDE-style polymorphic allocators.
C++
31
star
52

blpapi-hs

Haskell interface to BLPAPI
Haskell
30
star
53

rwl-bench

A set of benchmark tools for reader/writer locks.
C++
28
star
54

entsum

Open Source / ENTSUM: A Data Set for Entity-Centric Extractive Summarization
Jupyter Notebook
28
star
55

consul-cluster-cookbook

Wrapper cookbook which installs and configures a Consul cluster.
Ruby
26
star
56

python-comdb2

Python API to Bloomberg's comdb2 database.
Python
26
star
57

kbir_keybart

Experimental code used in pre-training the KBIR and KeyBART models
Python
26
star
58

blazingmq-sdk-java

Java SDK for BlazingMQ, a modern high-performance open source message queuing system.
Java
26
star
59

presto-accumulo

Presto Accumulo Integration
Java
25
star
60

sgtb

Structured Gradient Tree Boosting
Python
25
star
61

blazingmq-sdk-python

Python SDK for BlazingMQ, a modern high-performance open source message queuing system.
Python
24
star
62

docket

Tool to make running test suites easier, using docker-compose.
Go
22
star
63

jupyterhub-kdcauthenticator

A Kerberos authenticator module for the JupyterHub platform
Python
22
star
64

tzcron

A parser of cron-style scheduling expressions.
Python
20
star
65

constant.js

Immutable/Constant Objects for JavaScript
JavaScript
20
star
66

redis-cookbook

A set of Chef recipes for installing and configuring Redis.
HTML
19
star
67

go-testgroup

Helps you organize tests in Go programs into groups.
Go
19
star
68

MixCE-acl2023

Implementation of MixCE method described in ACL 2023 paper by Zhang et al.
Python
19
star
69

userchroot

A tool to allow controlled access to 'chroot' functionality by users without root permissions
C
19
star
70

sable

Database migration tool for Marten.
C#
19
star
71

nginx-cookbook

A set of Chef recipes for installing and configuring Nginx.
Ruby
17
star
72

zookeeper-cookbook

A set of Chef recipes for installing and configuring Apache Zookeeper.
Ruby
17
star
73

mynexttalk

16
star
74

chef-bcs

Bloomberg Cloud Storage Chef application
Ruby
16
star
75

git-adventure-game-builder

A set of tools for building a Git adventure game, to help people learn Git
Shell
15
star
76

vault-cluster-cookbook

Application cookbook which installs and configures Vault with Consul as a backend.
Ruby
15
star
77

emnlp20_depsrl

Research code and scripts used in the paper Semantic Role Labeling as Syntactic Dependency Parsing.
Python
14
star
78

coffeechat

A simple web application for arranging 'chats over coffee'.
TypeScript
12
star
79

k8eraid

A relatively simple, unified method for reporting on Kubernetes resource issues.
Go
12
star
80

pytest-pystack

Pytest plugin that runs PyStack on slow or hanging tests.
Python
12
star
81

hackathon-aws-cluster

HTML
11
star
82

fast-noise-aware-topic-clustering

Research code and scripts used in the Silburt et al. (2021) EMNLP 2021 paper 'FANATIC: FAst Noise-Aware TopIc Clustering'
Python
10
star
83

emnlp21_fewrel

Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)
Python
10
star
84

mastering-difficult-conversations

Plan It, Say It, Nail It: Mastering Difficult Conversations
10
star
85

wsk-notify

Simple, customizable console notifications.
JavaScript
10
star
86

jenkins-cluster-cookbook

Ruby
9
star
87

decorator-taxonomy

A taxonomy of Python decorator types.
HTML
9
star
88

tdd-labs

Problems and Solutions for Test-Driven-Development training
JavaScript
9
star
89

argument-relation-transformer-acl2022

This repository contains code for our ACL 2022 Findings paper `Efficient Argument Structure Extraction with Transfer Learning and Active Learning`. We implement an argument structure extraction method based on a pre-trained Transformer model.`
Python
9
star
90

sigir2018-kg-contextualization

8
star
91

bloomberg.github.io

Source code for the https://bloomberg.github.io site
HTML
8
star
92

locking_resource-cookbook

Chef cookbook for serializing access to resources
Ruby
7
star
93

datalake-query-ingester

Python
7
star
94

cobbler-cookbook

A Chef cookbook for installing and maintaining Cobbler
Ruby
7
star
95

p2473

Example code for WG21 paper P2473
Perl
6
star
96

collectd-cookbook

Ruby
6
star
97

Catalyst-Authentication-Credential-GSSAPI

A module that provides integration of the Catalyst web application framework with GSSAPI/SPNEGO HTTP authentication.
Perl
6
star
98

bob-bot

Java
5
star
99

.github

Organization-wide community files
5
star
100

jenkins-procguard

Perl
5
star