• This repository has been archived on 02/Mar/2023
  • Stars
    star
    407
  • Rank 106,183 (Top 3 %)
  • Language Jsonnet
  • License
    MIT No Attribution
  • Created almost 7 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

This repo contains a simple application that consists of three microservices. Each application is deployed using different Compute options on AWS.

Deploying Microservices on AWS Cloud

Table of Contents

This repo contains a simple application that consists of three microservices. The sample application uses three services:

  1. webapp: Web application microservice calls greeting and name microservice to generate a greeting for a person.

  2. greeting: A microservice that returns a greeting.

  3. name: A microservice that returns a person’s name based upon {id} in the URL.

Each application is deployed using different AWS Compute options.

Build and Test Services using Maven

  1. Each microservice is in a different repo:

    greeting

    https://github.com/arun-gupta/microservices-greeting

    name

    https://github.com/arun-gupta/microservices-name

    webapp

    https://github.com/arun-gupta/microservices-webapp

  2. Clone all the repos. Open each one in a separate terminal.

  3. Run greeting service: mvn wildfly-swarm:run

  4. Run name service: mvn wildfly-swarm:run

  5. Run webapp service: mvn wildfly-swarm:run

  6. Run the application: curl http://localhost:8080/

Docker

Create Docker Images

mvn package -Pdocker for each repo will create the Docker image.

By default, the Docker image name is arungupta/<service> where <service> is greeting, name or webapp. The image can be created in your repo:

mvn package -Pdocker -Ddocker.repo=<repo>

By default, the latest tag is used for the image. A different tag may be specified as:

mvn package -Pdocker -Ddocker.tag=<tag>

Push Docker Images to Registry

Push Docker images to the registry:

mvn install -Pdocker

Deployment to Docker Swarm

  1. docker swarm init

  2. cd apps/docker

  3. docker stack deploy --compose-file docker-compose.yaml myapp

  4. Access the application: curl http://localhost:8080

    1. Optionally test the endpoints:

  5. Remove the stack: docker stack rm myapp

Debug

  1. List stack:

    docker stack ls
  2. List services in the stack:

    docker stack services myapp
  3. List containers:

    docker container ls -f name=myapp*
  4. Get logs for all the containers in the webapp service:

    docker service logs myapp_webapp-service

Amazon ECS and AWS Fargate

This section will explain how to deploy these microservices using Fargate on Amazon ECS cluster.

Note
AWS Fargate is not supported in all AWS regions. These instructions will only work in supported regions. Check the AWS’s Regions Table for details.

Deployment: Create Cluster using AWS Console

This section will explain how to create an ECS cluster using AWS Console.

Use the cluster name fargate-cluster.

Deployment: Create Cluster using AWS CloudFormation

This section will explain how to create an ECS cluster using CloudFormation.

The following resources are needed in order to deploy the sample application:

  • Private Application Load Balancer for greeting and name and a public ALB for webapp

  • Target groups registered with the ALB

  • Security Group that allows the services to talk to each other and be externally accessible

    1. Create an ECS cluster with these resources:

      cd apps/ecs/fargate/templates
      aws cloudformation deploy \
        --stack-name fargate-cluster \
        --template-file infrastructure.yaml \
        --region us-east-1 \
        --capabilities CAPABILITY_IAM
    2. View the output from the cluster:

      aws cloudformation \
        describe-stacks \
        --region us-east-1 \
        --stack-name fargate-cluster \
        --query 'Stacks[].Outputs[]' \
        --output text

Deployment: Simple ECS Cluster

This section explains how to create a ECS cluster with no additional resources. The cluster can be created with a private VPC or a public VPC. The CloudFormation templates for different types are available at https://github.com/awslabs/aws-cloudformation-templates/tree/master/aws/services/ECS/EC2LaunchType/clusters.

This section will create a 3-instance cluster using a public VPC:

curl -O https://raw.githubusercontent.com/awslabs/aws-cloudformation-templates/master/aws/services/ECS/EC2LaunchType/clusters/public-vpc.yml
aws cloudformation deploy \
  --stack-name MyECSCluster \
  --template-file public-vpc.yml \
  --region us-east-1 \
  --capabilities CAPABILITY_IAM

List the cluster using aws ecs list-clusters command:

{
    "clusterArns": [
        "arn:aws:ecs:us-east-1:091144949931:cluster/MyECSCluster-ECSCluster-197YNE1ZHPSOP"
    ]
}

Deployment: Create Cluster and Deploy Services using Fargate CLI

This section explains how to create a Fargate cluster and run services on it.

  1. Download CLI from http://somanymachines.com/fargate/

  2. Create the LoadBalancer:

    fargate lb create \
      microservices-lb \
      --port 80
  3. Create greeting service:

    fargate service create greeting-service \
      --lb microservices-lb \
      -m 1024 \
      -i arungupta/greeting \
      -p http:8081 \
      --rule path=/resources/greeting
  4. Create name service:

    fargate service create name-service \
      --lb microservices-lb \
      -m 1024 \
      -i arungupta/name \
      -p http:8082 \
      --rule path=/resources/names/*
  5. Get URL of the LoadBalancer:

    fargate lb info microservices-lb
  6. Create webapp service:

    fargate service create webapp-service \
      --lb microservices-lb \
      -m 1024 \
      -i arungupta/webapp \
      -p http:8080 \
      -e GREETING_SERVICE_HOST=<lb> \
      -e GREETING_SERVICE_PORT=80 \
      -e GREETING_SERVICE_PATH=/resources/greeting \
      -e NAME_SERVICE_HOST=<lb> \
      -e NAME_SERVICE_PORT=80 \
      -e NAME_SERVICE_PATH=/resources/names
  7. Test the application:

    curl http://<lb>
    curl http://<lb>/0
  8. Scale the service: fargate service scale webapp-service +3

  9. Clean up the resources:

    fargate service scale greeting-service 0
    fargate service scale name-service 0
    fargate service scale webapp-service 0
    fargate lb destroy microservices-lb
Note
As described at https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service_limits.html, the number of tasks using the Fargate launch type, per region, per account is 20. This limit can be increased by filing a support ticket from the AWS Console.

Deployment: Deploy Tasks and Service using ECS CLI

This section will explain how to create an ECS cluster using a CloudFormation template. The tasks are then deployed using ECS CLI and Docker Compose definitions.

Pre-requisites

  1. Install ECS CLI.

  2. Install - Perl.

Deploy the application

  1. Run the CloudFormation template to create the AWS resources:

    Region

    Launch Template

    N. Virginia (us-east-1)

    deploy to aws
  2. Run the follow command to capture the output from the CloudFormation template as key/value pairs in the file ecs-cluster.props. These will be used to setup environment variables which are used subseqently.

    aws cloudformation describe-stacks \
      --stack-name aws-microservices-deploy-options-ecscli \
      --query 'Stacks[0].Outputs' \
      --output=text | \
      perl -lpe 's/\s+/=/g' | \
      tee ecs-cluster.props
  3. Setup the environment variables using this file:

    set -o allexport
    source ecs-cluster.props
    set +o allexport
  4. Configure ECS CLI:

    ecs-cli configure --cluster $ECSCluster --region us-east-1 --default-launch-type FARGATE
  5. Create the task definition parameters for each of the service:

    ecs-params-create.sh greeting
    ecs-params-create.sh name
    ecs-params-create.sh webapp
  6. Start the greeting service up:

    ecs-cli compose --verbose \
      --file greeting-docker-compose.yaml \
      --task-role-arn $ECSRole \
      --ecs-params ecs-params_greeting.yaml \
      --project-name greeting \
      service up \
      --target-group-arn $GreetingTargetGroupArn \
      --container-name greeting-service \
      --container-port 8081
  7. Bring the name service up:

    ecs-cli compose --verbose \
      --file name-docker-compose.yaml \
      --task-role-arn $ECSRole \
      --ecs-params ecs-params_name.yaml  \
      --project-name name \
      service up \
      --target-group-arn $NameTargetGroupArn \
      --container-name name-service \
      --container-port 8082
  8. Bring the webapp service up:

    ecs-cli compose --verbose \
      --file webapp-docker-compose.yaml \
      --task-role-arn $ECSRole \
      --ecs-params ecs-params_webapp.yaml \
      --project-name webapp \
      service up \
      --target-group-arn $WebappTargetGroupArn \
      --container-name webapp-service \
      --container-port 8080

    Docker Compose supports environment variable substitution. The webapp-docker-compose.yaml uses $PrivateALBCName to refer to the private Application Load Balancer for greeting and name service.

  9. Check the healthy status of different services:

    aws elbv2 describe-target-health \
      --target-group-arn $GreetingTargetGroupArn \
      --query 'TargetHealthDescriptions[0].TargetHealth.State' \
      --output text
    aws elbv2 describe-target-health \
      --target-group-arn $NameTargetGroupArn \
      --query 'TargetHealthDescriptions[0].TargetHealth.State' \
      --output text
    aws elbv2 describe-target-health \
      --target-group-arn $WebappTargetGroupArn \
      --query 'TargetHealthDescriptions[0].TargetHealth.State' \
      --output text
  10. Once all the services are in healthy state, get a response from the webapp service:

    curl http://"$ALBPublicCNAME"
    Hello Sheldon

Tear down the resources

ecs-cli compose --verbose \
      --file greeting-docker-compose.yaml \
      --task-role-arn $ECSRole \
      --ecs-params ecs-params_greeting.yaml \
      --project-name greeting \
      service down
ecs-cli compose --verbose \
      --file name-docker-compose.yaml \
      --task-role-arn $ECSRole \
      --ecs-params ecs-params_name.yaml \
      --project-name name \
      service down
ecs-cli compose --verbose \
      --file webapp-docker-compose.yaml \
      --task-role-arn $ECSRole \
      --ecs-params ecs-params_webapp.yaml \
      --project-name webapp \
      service down
aws cloudformation delete-stack --region us-east-1 --stack-name aws-microservices-deploy-options-ecscli

Deployment: Create Cluster and Deploy Fargate Tasks using CloudFormation

This section creates an ECS cluster and deploys Fargate tasks to the cluster:

Region

Launch Template

N. Virginia (us-east-1)

deploy to aws

Retrieve the public endpoint to test your application deployment:

aws cloudformation \
  describe-stacks \
  --region us-east-1 \
  --stack-name aws-compute-options-fargate \
  --query 'Stacks[].Outputs[?OutputKey==`PublicALBCNAME`].[OutputValue]' \
  --output text

Use the command to test:

curl http://<public_endpoint>

Deployment: Create Cluster and Deploy EC2 Tasks using CloudFormation

This section creates an ECS cluster and deploys EC2 tasks to the cluster:

Region

Launch Template

N. Virginia (us-east-1)

deploy to aws

Retrieve the public endpoint to test your application deployment:

aws cloudformation \
  describe-stacks \
  --region us-east-1 \
  --stack-name aws-compute-options-ecs \
  --query 'Stacks[].Outputs[?OutputKey==`PublicALBCNAME`].[OutputValue]' \
  --output text

Use the command to test:

curl http://<public_endpoint>

Deployment Pipeline: Fargate with AWS CodePipeline

This section will explain how to deploy a Fargate task via CodePipeline

  1. Fork each of the repositories in the Build and Test Services using Maven section.

  2. Clone the forked repositories to your local machine:

    git clone https://github.com/<your_github_username>/microservice-greeting
    git clone https://github.com/<your_github_username>/microservice-name
    git clone https://github.com/<your_github_username>/microservice-webapp
  3. Create the CloudFormation stack:

    Region

    Launch Template

    N. Virginia (us-east-1)

    deploy to aws

The CloudFormation template requires the following input parameters:

  1. Cluster Configuration

    1. Launch Type: Select Fargate.

  2. GitHub Configuration

    1. Repo: The repository name for each of the sample services. These have been populated for you.

    2. Branch: The branch of the repository to deploy continuously, e.g. master.

    3. User: Your GitHub username.

    4. Personal Access Token: A token for the user specified above. Use https://github.com/settings/tokens to create a new token. See Creating a personal access token for the command line for more details.

The CloudFormation stack has the following outputs:

  1. ServiceUrl: The URL of the sample service that is being deployed.

  2. PipelineUrl: A deep link for the pipeline in the AWS Management Console.

Once the stack has been provisioned, click the link for the PipelineUrl. This will open the CodePipline console. Clicking on the pipeline will display a diagram that looks like this:

Fargate Pipeline

Now that a deployment pipeline has been established for our services, you can modify files in the repositories we cloned earlier and push your changes to GitHub. This will cause the following actions to occur:

  1. The latest changes will be pulled from GitHub.

  2. A new Docker image will be created and pushed to ECR.

  3. A new revision of the task definition will be created using the latest version of the Docker image.

  4. The service definition will be updated with the latest version of the task definition.

  5. ECS will deploy a new version of the Fargate task.

Cleaning up the example resources

To remove all the resources created by the example, do the following:

  1. Delete the main CloudFromation stack which deletes the sub stacks and resouces.

  2. Manually delete the resources which may contain content:

    1. S3 Bucket: ArtifactBucket

    2. ECR Repository: Repository

Monitoring: AWS X-Ray

#55

Monitoring: Prometheus and Grafana

#78

Kubernetes

Deployment: Create EKS Cluster

Create an EKS cluster based upon Limited Preview instructions.

Deployment: Create Cluster using kops

  1. Install kops

    brew update && brew install kops
  2. Create an S3 bucket and setup KOPS_STATE_STORE:

    aws s3 mb s3://kubernetes-aws-io
    export KOPS_STATE_STORE=s3://kubernetes-aws-io
  3. Define an envinronment variable for Availability Zones for the cluster:

    export AWS_AVAILABILITY_ZONES="$(aws ec2 describe-availability-zones --query 'AvailabilityZones[].ZoneName' --output text | awk -v OFS="," '$1=$1')"
  4. Create cluster:

    kops create cluster \
      --name=cluster.k8s.local \
      --zones=$AWS_AVAILABILITY_ZONES \
      --yes

By default, it creates a single master and 2 worker cluster spread across the AZs.

Deployment: Standalone Manifests

Make sure kubectl CLI is installed and configured for the Kubernetes cluster.

  1. Apply the manifests: kubectl apply -f apps/k8s/standalone/manifest.yml

  2. Access the application: curl http://$(kubectl get svc/webapp -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')

  3. Delete the application: kubectl delete -f apps/k8s/standalone/manifest.yml

Deployment: Helm

Make sure kubectl CLI is installed and configured for the Kubernetes cluster. Also, make sure Helm is installed on that Kubernetes cluster.

  1. Install the Helm CLI: brew install kubernetes-helm

  2. Install Helm in Kubernetes cluster: helm init

  3. Install the Helm chart: helm install --name myapp apps/k8s/helm/myapp

    1. By default, the latest tag for an image is used. Alternatively, a different tag for the image can be used:

      helm install --name myapp apps/k8s/helm/myapp --set "docker.tag=<tag>"
  4. Access the application:

    curl http://$(kubectl get svc/myapp-webapp -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
  5. Delete the Helm chart: helm delete --purge myapp

Deployment: Ksonnet

Make sure kubectl CLI is installed and configured for the Kubernetes cluster.

  1. Install ksonnet from homebrew tap: brew install ksonnet/tap/ks

  2. Change into the ksonnet sub directory: cd apps/k8s/ksonnet/myapp

  3. Add the environment: ks env add default

  4. Deploy the manifests: ks apply default

  5. Access the application: curl http://$(kubectl get svc/webapp -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')

  6. Delete the application: ks delete default

Deployment: Kubepack

This section will explain how to use Kubepack to deploy your Kubernetes application.

  1. Install kubepack CLI:

    wget -O pack https://github.com/kubepack/pack/releases/download/0.1.0/pack-darwin-amd64 \
      && chmod +x pack \
      && sudo mv pack /usr/local/bin/
  2. Move to package root directory: cd apps/k8s/kubepack

  3. Pull dependent packages:

    pack dep -f .

    This will generate manifests/vendor folder.

  4. Generate final manifests: Combine the manifests for this package and its dependencies and potential patches into the final manifests:

    pack up -f .

    This will create manifests/output folder with an installer script and final manifests.

  5. Install package: ./manifests/output/install.sh

  6. Access the application:

    curl http://$(kubectl get svc/webapp -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
  7. Delete the application: kubectl delete -R -f manifests/output

Deployment: Local Dev & Test using Draft

  1. Install Draft:

    brew tap Azure/draft
    brew install Azure/draft/draft
  2. Initialize:

    draft init
  3. Create Draft artifacts to containerize and deploy to k8s:

    draft create

Following issues are identified so far:

Deployment Pipeline: AWS Codepipeline

This section explains how to setup a deployment pipeline using AWS CodePipeline.

CloudFormation templates for different regions are listed at https://github.com/aws-samples/aws-kube-codesuite. us-west-2 is listed below.

Region

Launch Template

Oregon (us-west-2)

deploy to aws
  1. Create Git credentials for HTTPS connections to AWS CodeCommit: https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html?icmpid=docs_acc_console_connect#setting-up-gc-iam

  2. Reset any stored git credentials for CodeCommit in the keychain. Open Keychain Access, search for codecommit and remove any related entries.

  3. Get CodeCommit repo URL from CloudFormation output and follow the instructions at https://github.com/aws-samples/aws-kube-codesuite#test-cicd-platform.

Deployment Pipeline: Jenkins

Create a deployment pipeline using Jenkins X.

  1. Install Jenkins X CLI:

    brew tap jenkins-x/jx
    brew install jx
  2. Create the Kubernetes cluster:

    jx create cluster aws

    This will create a Kubernetes cluster on AWS using kops. This cluster will have RBAC enabled. It will also have insecure registries enabled. These are needed by the pipeline to store Docker images.

  3. Clone the repo:

    git clone https://github.com/arun-gupta/docker-kubernetes-hello-world
  4. Import the project in Jenkins X:

    jx import

    This will generate Dockerfile and Helm charts, if they don’t already exist. It also creates a Jenkinsfile with different build stages identified. Finally, it triggers a Jenkins build and deploy the application in a staging environment by default.

  5. View Jenkins console using jx console. Select the user, project and branch to see the deployment pipeline.

  6. Get the staging URL using jx get apps and view the output from the application in a browser window.

  7. Now change the message in displayed from HelloHandler and push to the GitHub repo. Make sure to change the corresponding test as well otherwise the pipeline will fail. Wait for the deployment to complete and then refresh the browser page to see the updated output.

Deployment Pipeline: Gitkube

#88

  1. Deploy the greeting service

  2. Install Gitkube:

    kubectl create -f https://storage.googleapis.com/gitkube/gitkube-setup-stable.yaml
    kubectl --namespace kube-system expose deployment gitkubed --type=LoadBalancer --name=gitkubed
  3. Configure secret for Docker registry in the cluster:

    kubectl create secret \
      docker-registry gitkube-secret \
      --docker-server=https://index.docker.io/v1/ \
      --docker-username=arungupta \
      --docker-password='<password>' \
      [email protected]
  4. Create a Remote resource manifest based upon greeting-remote.yaml

  5. Create the Remote resource:

    kubectl apply -f greeting-remote.yaml
  6. Add remote to git repo:

    git remote add gitkube `kubectl get remote greeting -o jsonpath='{.status.remoteUrl}'`

Deployment Pipeline: Spinnaker

Deployment Pipeline: Skaffold

Deployment: Canary Deployment with Istio

Istio allows the deployment of canary services. This is done by using a simple DSL that controls how API calls and layer-4 traffic flow across various services in the application deployment.

  1. Install Istio in the Kubernetes cluster:

    curl -L https://git.io/getLatestIstio | sh -
    cd istio-0.7.1/
    kubectl apply -f install/kubernetes/istio.yaml
  2. Istio uses the Envoy proxy to manage all inbound/outbound traffic in the service mesh. Envoy proxy needs to be injected as sidecar into the application. So, we’ll deploy the application:

    kubectl apply -f <(istioctl kube-inject -f apps/k8s/istio/manifest.yaml)

    This will deploy the application with 3 microservices. Each microservice is deployed in its own pod, with the Envoy proxy injected into the pod; Envoy will now take over all network communications between the pods.

  3. Create route rules:

    kubectl apply -f apps/k8s/istio/route-50-50.yaml
  4. Access the application:

    curl http://$(kubectl get svc/webapp -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')

    Access the endpoint multiple times and notice how Hello and Howdy greeting is returned. Its not a round-robin but over 100 requests, 50% would be split between different greeting message.

    This is causing #239.

Here are some convenient commands to manage route rules:

  1. istioctl get routerules shows the list of all route rules

  2. istioctl delete routerule <name> deletes a route rule by name

Another route with the traffic split of 90% and 10% is at apps/k8s/istio/route-90-10.yaml.

Monitoring: AWS X-Ray

  1. arungupta/xray:us-west-2 Docker image is already available on Docker Hub. Optionally, you may build the image:

    cd config/xray
    docker build -t arungupta/xray:latest .
    docker image push arungupta/xray:us-west-2
  2. Deploy the DaemonSet: kubectl apply -f xray-daemonset.yaml

  3. Deploy the application using Helm charts:

    helm install --name myapp apps/k8s/helm/myapp
  4. Access the application:

    curl http://$(kubectl get svc/myapp-webapp -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
  5. Open the X-Ray console and watch the service map and traces.

X-Ray Service map looks like:

k8s xray service map

X-Ray traces looks like:

k8s xray traces

Monitoring: Conduit

Conduit is a small, ultralight, incredibly fast service mesh centered around a zero config approach. It can be used for gaining remarkable visibility in your Kubernetes deployments.

  1. Confirm that both Kubernetes client and server versions are v1.8.0 or greater using kubectl version --short

  2. Install the Conduit CLI on your local machine:

    curl https://run.conduit.io/install | sh
  3. Add the conduit command into your PATH:

    export PATH=$PATH:$HOME/.conduit/bin
  4. Verify the CLI is installed and running correctly. You will see a message that says 'Server version: unavailable' because you have not installed Conduit in your deployments.

    conduit version
  5. Install Conduit on your Kubernetes cluster. It will install into a separate conduit namespace, where it can be easily removed.

    conduit install | kubectl apply -f -
  6. Verify installation of Conduit into your cluster. Your Client and Server versions should now be the same.

    conduit version
  7. Verify the Conduit dashboard opens and that you can connect to Conduit in your cluster.

    conduit dashboard
  8. Install the demo app to see how Conduit handles monitoring of your Kubernetes applications.

    curl https://raw.githubusercontent.com/runconduit/conduit-examples/master/emojivoto/emojivoto.yml | conduit inject - | kubectl apply -f -
  9. You now have a demo application running on your Kubernetes cluster and also added to the Conduit service mesh. You can see a live version of this app (not in your cluster) to understand what this demo app is. Click to vote your favorite emoji. One of them has an error. Which one is it? You can also see the local version of this app running in your cluster:

    kubectl get svc web-svc -n emojivoto -o jsonpath="{.status.loadBalancer.ingress[0].*}"

The demo app includes a service (vote-bot) constantly running traffic through the demo app. Look back at the conduit dashboard. You should be able to browse all the services that are running as part of the application to view success rate, request rates, latency distribution percentiles, upstream and downstream dependencies, and various other bits of information about live traffic.

You can also see useful data about live traffic from the conduit CLI.

  1. Check the status of the demo app (emojivoto) deployment named web. You should see good latency, but a success rate indicating some errors.

    conduit stat -n emojivoto deployment web
  2. Determine what other deployments in the emojivoto namespace talk to the web deployment.

    conduit stat deploy --all-namespaces --from web --from-namespace emojivoto
  3. You should see that web talks to both the emoji and voting services. Based on their success rates, you should see that the voting service is responsible for the low success rate of requests to web. Determine what else talks to the voting service.

    conduit stat deploy --to voting --to-namespace emojivoto --all-namespaces
  4. You should see that it only talks to web. You now have a plausible target to investigate further since the voting service is returning a low success rate. From here, you might look into the logs, or traces, or other forms of deeper investigation to determine how to fix the error.

Monitoring: Istio and Prometheus

Istio is deployed as a sidecar proxy into each of your pods; this means it can see and monitor all the traffic flows between your microservices and generate a graphical representation of your mesh traffic.

  1. Prometheus addon will obtain the metrics from Istio. Install Prometheus:

    kubectl apply -f install/kubernetes/addons/prometheus.yaml
  2. Install the Servicegraph addon; Servicegraph queries Prometheus, which obtains details of the mesh traffic flows from Istio:

    kubectl apply -f install/kubernetes/addons/servicegraph.yaml
  3. Generate some traffic to the application:

    curl http://$(kubectl get svc/webapp -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
  4. View the ServiceGraph UI:

    kubectl -n istio-system \
      port-forward $(kubectl -n istio-system \
        get pod \
        -l app=servicegraph \
        -o jsonpath='{.items[0].metadata.name}') \
        8088:8088 &
    open http://localhost:8088/dotviz
  5. You should see a distributed trace that looks something like this. It may take a few seconds for Servicegraph to become available, so refresh the browser if you do not receive a response.

    istio servicegraph

Monitoring: Prometheus and Grafana

#79

AWS Lambda

Deployment: Package Lambda Functions

mvn clean package -Plambda in each repo will build the deployment package for each microservice.

Deployment: Test Lambda Functions Locally

Serverless Application Model (SAM) defines a standard application model for serverless applications. It extends AWS CloudFormation to provide a simplified way of defining the Amazon API Gateway APIs, AWS Lambda functions, and Amazon DynamoDB tables needed by your serverless application.

sam is the AWS CLI tool for managing Serverless applications written with SAM. Install SAM CLI as:

npm install -g aws-sam-local

The complete installation steps for SAM CLI are at https://github.com/awslabs/aws-sam-local#installation.

In Mac

All commands are given from apps/lambda directory.

  1. Start greeting service:

    sam local start-api --template greeting-sam.yaml --port 3001
  2. Test greeting endpoint:

    curl http://127.0.0.1:3001/resources/greeting
  3. Start name service:

    sam local start-api --template name-sam.yaml --port 3002
  4. Test name endpoint:

    curl http://127.0.0.1:3002/resources/names
    curl http://127.0.0.1:3002/resources/names/1
  5. Start webapp service:

    sam local start-api --template webapp-sam.yaml --env-vars test/env-mac.json --port 3000
  6. Test webapp endpoint:

    curl http://127.0.0.1:3000/1

In Windows

Firstly start the Greeting and Name service as Mac, and then start the WebApp service using the following command

  1. sam local start-api --template webapp-sam.yaml --env-vars test/env-win.json --port 3000

  2. Test the urls above in a browser

Deployment: Debug using IntelliJ

This section will explain how to debug your Lambda functions locally using SAM Local and IntelliJ.

  1. Start functions using SAM Local and a debug port:

    sam local start-api \
      --env-vars test/env-mac.json \
      --template sam.yaml \
      --debug-port 5858
  2. In IntelliJ, setup a break point in your Lambda function.

  3. Go to Run, Debug, Edit Configurations, specify the port 5858 and click on Debug. The breakpoint will hit and you can see the debug state of the function.

Deployment: Deploy using Serverless Application Model

  1. Serverless applications are stored as a deployment packages in a S3 bucket. Create a S3 bucket:

    aws s3api create-bucket \
      --bucket aws-microservices-deploy-options \
      --region us-west-2 \
      --create-bucket-configuration LocationConstraint=us-west-2

    Make sure to use a bucket name that is unique.

  2. Package the SAM application. This uploads the deployment package to the specified S3 bucket and generates a new file with the code location:

    sam package \
      --template-file sam.yaml \
      --s3-bucket aws-microservices-deploy-options \
      --output-template-file \
      sam.transformed.yaml
  3. Create the resources:

    sam deploy \
      --template-file sam.transformed.yaml \
      --stack-name aws-microservices-deploy-options-lambda \
      --capabilities CAPABILITY_IAM
  4. Test the application:

    1. Greeting endpoint:

      curl `aws cloudformation \
        describe-stacks \
        --stack-name aws-microservices-deploy-options-lambda \
        --query "Stacks[].Outputs[?OutputKey=='GreetingApiEndpoint'].[OutputValue]" \
        --output text`
    2. Name endpoint:

      curl `aws cloudformation \
        describe-stacks \
        --stack-name aws-microservices-deploy-options-lambda \
        --query "Stacks[].Outputs[?OutputKey=='NamesApiEndpoint'].[OutputValue]" \
        --output text`
    3. Webapp endpoint:

      curl `aws cloudformation \
        describe-stacks \
        --stack-name aws-microservices-deploy-options-lambda \
        --query "Stacks[].Outputs[?OutputKey=='WebappApiEndpoint'].[OutputValue]" \
        --output text`/1

Deployment: Deploy to Serverless Application Repository

The AWS Serverless Application Repository (SAR) enables you to quickly deploy code samples, components, and complete applications for common use cases such as web and mobile back-ends, event and data processing, logging, monitoring, IoT, and more. Each application is packaged with an AWS Serverless Application Model (SAM) template that defines the AWS resources used.

The complete list of applications can be seen at https://serverlessrepo.aws.amazon.com/applications.

This section explains how to publish your SAM application to SAR. Detailed instructions are at https://docs.aws.amazon.com/serverlessrepo/latest/devguide/serverless-app-publishing-applications.html.

  1. Applications packaged as SAM can be published at https://console.aws.amazon.com/serverlessrepo/home?locale=en&region=us-east-1#/published-applications

  2. Add the following policy to your S3 bucket:

    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Principal": {
                    "Service":  "serverlessrepo.amazonaws.com"
                },
                "Action": "s3:GetObject",
                "Resource": "arn:aws:s3:::<your-bucket-name>/*"
            }
        ]
    }
  3. Use sam.transformed.yaml as the SAM template

  4. Publish the application

  5. Test the application:

    curl `aws cloudformation \
      describe-stacks \
      --stack-name aws-serverless-repository-aws-microservices \
      --query "Stacks[].Outputs[?OutputKey=='WebappApiEndpoint'].[OutputValue]" \
      --output text`/1
  6. List of your published applications: https://console.aws.amazon.com/serverlessrepo/home?locale=en&region=us-east-1#/published-applications

Deployment Pipeline: AWS CodePipeline

This section will explain how to deploy Lambda + API Gateway via CodePipeline.

  1. Generate new GitHub personal access token.

  2. Create CloudFormation stack:

    1. Create pipeline for greeting and name services. The default repository can be overridden to forked public repo by providing URL to the parameter Git:

      cd apps/lambda
      aws cloudformation deploy \
        --template-file microservice-pipeline.yaml \
        --stack-name lambda-microservices-greeting-pipeline \
        --parameter-overrides ServiceName=greeting GitHubOAuthToken=<github-token> \
        --capabilities CAPABILITY_IAM
      aws cloudformation deploy \
        --template-file microservice-pipeline.yaml \
        --stack-name lambda-microservices-name-pipeline \
        --parameter-overrides ServiceName=name GitHubOAuthToken=<github-token> \
        --capabilities CAPABILITY_IAM
    2. Wait for greeting and name pipelines to be created successfully. Then, create the pipeline for the webapp service:

      aws cloudformation deploy \
        --template-file microservice-pipeline.yaml \
        --stack-name lambda-microservices-webapp-pipeline \
        --parameter-overrides ServiceName=webapp GitHubOAuthToken=<github-token> \
        --capabilities CAPABILITY_IAM
  3. Get the Deployment Pipeline URL:

    aws cloudformation \
      describe-stacks \
      --stack-name lambda-microservices-greeting-pipeline \
      --query "Stacks[].Outputs[?OutputKey=='CodePipelineUrl'].[OutputValue]" \
      --output text
    aws cloudformation \
      describe-stacks \
      --stack-name lambda-microservices-name-pipeline \
      --query "Stacks[].Outputs[?OutputKey=='CodePipelineUrl'].[OutputValue]" \
      --output text
    aws cloudformation \
      describe-stacks \
      --stack-name lambda-microservices-webapp-pipeline \
      --query "Stacks[].Outputs[?OutputKey=='CodePipelineUrl'].[OutputValue]" \
      --output text
  4. Get the URL to test microservices:

    curl `aws cloudformation \
      describe-stacks \
      --stack-name aws-compute-options-lambda-greeting \
      --query "Stacks[].Outputs[?OutputKey=='greetingApiEndpoint'].OutputValue" \
      --output text`
    curl `aws cloudformation \
      describe-stacks \
      --stack-name aws-compute-options-lambda-name \
      --query "Stacks[].Outputs[?OutputKey=='nameApiEndpoint'].OutputValue" \
      --output text`
    curl `aws cloudformation \
      describe-stacks \
      --stack-name aws-compute-options-lambda-webapp \
      --query "Stacks[].Outputs[?OutputKey=='webappApiEndpoint'].OutputValue" \
      --output text`/1

    Deployment pipeline in the AWS console looks like as shown:

    Lambda Pipeline
  5. After one run of the webapp pipeline, access the endpoint:

    curl `aws cloudformation \
      describe-stacks \
      --stack-name lambda-microservices-webapp \
      --query "Stacks[].Outputs[?OutputKey=='webappApiEndpoint'].[OutputValue]" \
      --output text`/1

Deployment: Canary Deployment for Lambda Functions

The greeting service has implemented Lambda SAM Safe Deployment. By default, the function is deployed using Canary10Percent5Minutes deployment type. This means that 10% of the traffic will be shifted to the new Lambda function. If there are no errors or CloudWatch alarms are triggered, the remaining traffic is shifted after 5 minutes. This is further explained at https://docs.aws.amazon.com/lambda/latest/dg/automating-updates-to-serverless-apps.html.

In the microservice-greeting repository, we prepared the greeting-sam.yaml template allows users to change the deployment types supported by safe deployment. You can update the default setting to another support deployment types.

To test the Canary deployment, please follow the following steps

  1. Fork (microservice-greeting github repository.

  2. Checkout the forked repository localy

  3. Modify the Lambda function source code src/main/java/org/aws/samples/compute/greeting/GreetingEndpoint.java to return response "Hi" instead of "Hello".

  4. Use the following command to commit the change.

    git add src/main/java/org/aws/samples/compute/greeting/GreetingEndpoint.java
    git commit -m "say hi to canary"
    git push origin master
  5. Navigate to this repo, and run the following command to update CodePipeline stack for the greeting service.

    cd apps/lambda
    aws cloudformation deploy \
      --template-file microservice-pipeline.yaml \
      --stack-name lambda-microservices-greeting-pipeline \
      --parameter-overrides ServiceName=greeting GitHubOAuthToken=<github-token> GitHubSetting=OVERRIDE GitHubRepo=<forked-repo-name> GitHubOwner=<github-owner-user-name> GitHubBranch=master \
      --capabilities CAPABILITY_IAM

To checkout Canary deployment progress, navigate to AWS Console CodeDeploy Service and open Application lambda-microservices-greeting-ServerlessDeploymentApplication-<random-string> in the console. Please see the following example:

Lambda CodeDeploy

To monitor the deployment progress, select the in progress deployment link, you will see the progress like the following screenshot.

Lambda Canary

Deployment: Composition using AWS Step Functions

#76

Monitoring: AWS X-Ray

AWS X-Ray is fully integrated with AWS Lambda. This can be easily enabled for functions published using SAM by the following property:

Tracing: Active

More details about AWS Lambda and X-Ray integration is at https://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html.

Deploying the functions as explained above will generate X-Ray service map and traces.

Deployment: Remove the stack

aws cloudformation delete-stack \
  --stack-name aws-microservices-deploy-options-lambda

License

This sample code is made available under the MIT-0 license. See the LICENSE file.

More Repositories

1

aws-cdk-examples

Example projects using the AWS CDK
Python
4,121
star
2

aws-serverless-workshops

Code and walkthrough labs to set up serverless applications for Wild Rydes workshops
JavaScript
3,977
star
3

aws-workshop-for-kubernetes

AWS Workshop for Kubernetes
Shell
2,618
star
4

aws-machine-learning-university-accelerated-nlp

Machine Learning University: Accelerated Natural Language Processing Class
Jupyter Notebook
2,080
star
5

aws-serverless-airline-booking

Airline Booking is a sample web application that provides Flight Search, Flight Payment, Flight Booking and Loyalty points including end-to-end testing, GraphQL and CI/CD. This web application was the theme of Build on Serverless Season 2 on AWS Twitch running from April 24th until end of August in 2019.
Vue
1,967
star
6

ecs-refarch-cloudformation

A reference architecture for deploying containerized microservices with Amazon ECS and AWS CloudFormation (YAML)
Makefile
1,673
star
7

lambda-refarch-webapp

The Web Application reference architecture is a general-purpose, event-driven, web application back-end that uses AWS Lambda, Amazon API Gateway for its business logic. It also uses Amazon DynamoDB as its database and Amazon Cognito for user management. All static content is hosted using AWS Amplify Console.
JavaScript
1,561
star
8

serverless-patterns

Serverless patterns. Learn more at the website: https://serverlessland.com/patterns.
Python
1,544
star
9

aws-modern-application-workshop

A tutorial for developers that want to learn about how to build modern applications on top of AWS. You will build a sample website that leverages infrastructure as code, containers, serverless code functions, CI/CD, and more.
1,459
star
10

amazon-bedrock-workshop

This is a workshop designed for Amazon Bedrock a foundational model service.
Jupyter Notebook
1,419
star
11

aws-machine-learning-university-accelerated-cv

Machine Learning University: Accelerated Computer Vision Class
Jupyter Notebook
1,409
star
12

aws-glue-samples

AWS Glue code samples
Python
1,277
star
13

aws-deepracer-workshops

DeepRacer workshop content
Jupyter Notebook
1,086
star
14

aws-genai-llm-chatbot

A modular and comprehensive solution to deploy a Multi-LLM and Multi-RAG powered chatbot (Amazon Bedrock, Anthropic, HuggingFace, OpenAI, Meta, AI21, Cohere, Mistral) using AWS CDK on AWS
TypeScript
1,061
star
15

aws-refarch-wordpress

This reference architecture provides best practices and a set of YAML CloudFormation templates for deploying WordPress on AWS.
PHP
1,001
star
16

aws-machine-learning-university-accelerated-tab

Machine Learning University: Accelerated Tabular Data Class
Jupyter Notebook
955
star
17

aws-serverless-ecommerce-platform

Serverless Ecommerce Platform is a sample implementation of a serverless backend for an e-commerce website. This sample is not meant to be used as an e-commerce platform as-is, but as an inspiration on how to build event-driven serverless microservices on AWS.
Python
947
star
18

aws-big-data-blog

Java
895
star
19

machine-learning-samples

Sample applications built using AWS' Amazon Machine Learning.
Python
867
star
20

eks-workshop

AWS Workshop for Learning EKS
CSS
777
star
21

startup-kit-templates

CloudFormation templates to accelerate getting started on AWS.
Python
760
star
22

aws-incident-response-playbooks

756
star
23

aws-security-reference-architecture-examples

Example solutions demonstrating how to implement patterns within the AWS Security Reference Architecture guide using CloudFormation and Customizations for AWS Control Tower.
Python
731
star
24

retail-demo-store

AWS Retail Demo Store is a sample retail web application and workshop platform demonstrating how AWS infrastructure and services can be used to build compelling customer experiences for eCommerce, retail, and digital marketing use-cases
Jupyter Notebook
708
star
25

lambda-refarch-imagerecognition

The Image Recognition and Processing Backend reference architecture demonstrates how to use AWS Step Functions to orchestrate a serverless processing workflow using AWS Lambda, Amazon S3, Amazon DynamoDB and Amazon Rekognition.
JavaScript
662
star
26

aws-secure-environment-accelerator

The AWS Secure Environment Accelerator is a tool designed to help deploy and operate secure multi-account, multi-region AWS environments on an ongoing basis. The power of the solution is the configuration file which enables the completely automated deployment of customizable architectures within AWS without changing a single line of code.
HTML
653
star
27

simple-websockets-chat-app

This SAM application provides the Lambda functions, DynamoDB table, and roles to allow you to build a simple chat application based on API Gateway's new WebSocket-based API feature.
JavaScript
632
star
28

aws-codedeploy-samples

Samples and template scenarios for AWS CodeDeploy
Shell
627
star
29

emr-bootstrap-actions

This repository hold the Amazon Elastic MapReduce sample bootstrap actions
Shell
612
star
30

aws-bookstore-demo-app

AWS Bookstore Demo App is a full-stack sample web application that creates a storefront (and backend) for customers to shop for fictitious books. The entire application can be created with a single template. Built on AWS Full-Stack Template.
TypeScript
612
star
31

generative-ai-use-cases-jp

すぐに業務活用できるビジネスユースケース集付きの安全な生成AIアプリ実装
TypeScript
611
star
32

aws-lex-web-ui

Sample Amazon Lex chat bot web interface
JavaScript
607
star
33

hardeneks

Runs checks to see if an EKS cluster follows EKS Best Practices.
Python
603
star
34

lambda-refarch-mobilebackend

Serverless Reference Architecture for creating a Mobile Backend
Objective-C
584
star
35

amazon-personalize-samples

Notebooks and examples on how to onboard and use various features of Amazon Personalize
Jupyter Notebook
572
star
36

aws-serverless-workshop-innovator-island

Welcome to the Innovator Island serverless workshop! This repo contains all the instructions and code you need to complete the workshop.
JavaScript
564
star
37

kubernetes-for-java-developers

A Day in Java Developer’s Life, with a taste of Kubernetes
Java
562
star
38

aws-iot-chat-example

💬 Chat application using AWS IoT platform via MQTT over the WebSocket protocol
JavaScript
534
star
39

aws-dynamodb-examples

DynamoDB Examples
JavaScript
532
star
40

aws-amplify-graphql

Sample using AWS Amplify and AWS AppSync together for user login and authorization when making GraphQL queries and mutations. Also includes complex objects for uploading and downloading data to and from S3 with a React app.
JavaScript
521
star
41

aws-mobile-appsync-chat-starter-angular

GraphQL starter progressive web application (PWA) with Realtime and Offline functionality using AWS AppSync
TypeScript
520
star
42

aws-serverless-security-workshop

In this workshop, you will learn techniques to secure a serverless application built with AWS Lambda, Amazon API Gateway and RDS Aurora. We will cover AWS services and features you can leverage to improve the security of a serverless applications in 5 domains: identity & access management, code, data, infrastructure, logging & monitoring.
JavaScript
505
star
43

amazon-forecast-samples

Notebooks and examples on how to onboard and use various features of Amazon Forecast.
Jupyter Notebook
471
star
44

lambda-refarch-fileprocessing

Serverless Reference Architecture for Real-time File Processing
Python
450
star
45

ecs-blue-green-deployment

Reference architecture for doing blue green deployments on ECS.
Python
442
star
46

cloudfront-authorization-at-edge

Protect downloads of your content hosted on CloudFront with Cognito authentication using cookies and Lambda@Edge
TypeScript
439
star
47

aws-service-catalog-reference-architectures

Sample CloudFormation templates and architecture for AWS Service Catalog
JavaScript
430
star
48

amazon-bedrock-samples

This repository contains examples for customers to get started using the Amazon Bedrock Service. This contains examples for all available foundational models
Jupyter Notebook
422
star
49

siem-on-amazon-opensearch-service

A solution for collecting, correlating and visualizing multiple types of logs to help investigate security incidents.
Python
409
star
50

aws-cost-explorer-report

Python SAM Lambda module for generating an Excel cost report with graphs, including month on month cost changes. Uses the AWS Cost Explorer API for data.
Python
406
star
51

aws-security-workshops

A collection of the latest AWS Security workshops
Jupyter Notebook
401
star
52

aws-sam-java-rest

A sample REST application built on SAM and DynamoDB that demonstrates testing with DynamoDB Local.
Java
400
star
53

amazon-elasticsearch-lambda-samples

Data ingestion for Amazon Elasticsearch Service from S3 and Amazon Kinesis, using AWS Lambda: Sample code
JavaScript
393
star
54

amazon-textract-textractor

Analyze documents with Amazon Textract and generate output in multiple formats.
Jupyter Notebook
390
star
55

amazon-cloudfront-functions

JavaScript
388
star
56

aws-saas-factory-bootcamp

SaaS on AWS Bootcamp - Building SaaS Solutions on AWS
JavaScript
376
star
57

aws-lambda-extensions

A collection of sample extensions to help you get started with AWS Lambda Extensions
Go
376
star
58

amazon-sagemaker-notebook-instance-lifecycle-config-samples

A collection of sample scripts to customize Amazon SageMaker Notebook Instances using Lifecycle Configurations
Shell
366
star
59

non-profit-blockchain

Builds a blockchain network and application to track donations to non-profit organizations, using Amazon Managed Blockchain
SCSS
360
star
60

amazon-textract-code-samples

Amazon Textract Code Samples
Jupyter Notebook
355
star
61

amazon-neptune-samples

Samples and documentation for using the Amazon Neptune graph database service
JavaScript
355
star
62

lambda-refarch-streamprocessing

Serverless Reference Architecture for Real-time Stream Processing
JavaScript
349
star
63

amazon-ecs-java-microservices

This is a reference architecture for java microservice on Amazon ECS
Java
345
star
64

sessions-with-aws-sam

This repo contains all the SAM templates created in the Twitch series #SessionsWithSAM. The show is every Thursday on Twitch at 10 AM PDT.
JavaScript
343
star
65

amazon-rekognition-video-analyzer

A working prototype for capturing frames off of a live MJPEG video stream, identifying objects in near real-time using deep learning, and triggering actions based on an objects watch list.
JavaScript
343
star
66

aws-eks-accelerator-for-terraform

The AWS EKS Accelerator for Terraform is a framework designed to help deploy and operate secure multi-account, multi-region AWS environments. The power of the solution is the configuration file which enables the users to provide a unique terraform state for each cluster and manage multiple clusters from one repository. This code base allows users to deploy EKS add-ons using Helm charts.
HCL
338
star
67

aws-deepcomposer-samples

Jupyter Notebook
336
star
68

amazon-ecs-mythicalmysfits-workshop

A tutorial for developers who want to learn about how to containerized applications on top of AWS using AWS Fargate. You will build a sample website that leverages infrastructure as code, containers, CI/CD, and more! If you're planning on running this, let us know @ [email protected]. At re:Invent 2018, these sessions were run as CON214/CON321/CON322.
HTML
334
star
69

aws-iot-examples

Examples using AWS IoT (Internet of Things). Deprecated. See README for updated guidance.
JavaScript
331
star
70

aws-media-services-simple-vod-workflow

Lab that covers video conversion workflow for Video On Demand using AWS MediaConvert.
Python
328
star
71

php-examples-for-aws-lambda

Demo serverless applications, examples code snippets and resources for PHP
PHP
324
star
72

aws-serverless-cicd-workshop

Learn how to build a CI/CD pipeline for SAM-based applications
CSS
317
star
73

create-react-app-auth-amplify

Implements a basic authentication flow for signing up/signing in users as well as protected client side routing using AWS Amplify.
JavaScript
314
star
74

api-gateway-secure-pet-store

Amazon API Gateway sample using Amazon Cognito credentials through AWS Lambda
Objective-C
309
star
75

aws-etl-orchestrator

A serverless architecture for orchestrating ETL jobs in arbitrarily-complex workflows using AWS Step Functions and AWS Lambda.
Python
307
star
76

amazon-textract-serverless-large-scale-document-processing

Process documents at scale using Amazon Textract
Python
302
star
77

lambda-go-samples

An example of using AWS Lambda with Go
Go
302
star
78

amazon-cloudfront-secure-static-site

Create a secure static website with CloudFront for your registered domain.
JavaScript
300
star
79

amazon-ecs-firelens-examples

Sample logging architectures for FireLens on Amazon ECS and AWS Fargate.
300
star
80

aws-nodejs-sample

Sample project to demonstrate usage of the AWS SDK for Node.js
JavaScript
299
star
81

aws-cognito-apigw-angular-auth

A simple/sample AngularV4-based web app that demonstrates different API authentication options using Amazon Cognito and API Gateway with an AWS Lambda and Amazon DynamoDB backend that stores user details in a complete end to end Serverless fashion.
JavaScript
297
star
82

lambda-ecs-worker-pattern

This example code illustrates how to extend AWS Lambda functionality using Amazon SQS and the Amazon EC2 Container Service (ECS).
POV-Ray SDL
291
star
83

aws-lambda-fanout

A sample AWS Lambda function that accepts messages from an Amazon Kinesis Stream and transfers the messages to another data transport.
JavaScript
289
star
84

aws-saas-factory-ref-solution-serverless-saas

Python
286
star
85

aws-mlu-explain

Visual, Interactive Articles About Machine Learning: https://mlu-explain.github.io/
JavaScript
285
star
86

aws-serverless-shopping-cart

Serverless Shopping Cart is a sample implementation of a serverless shopping cart for an e-commerce website.
Python
282
star
87

aws-serverless-samfarm

This repo is full CI/CD Serverless example which was used in the What's New with AWS Lambda presentation at Re:Invent 2016.
JavaScript
280
star
88

eb-node-express-sample

Sample Express application for AWS Elastic Beanstalk
EJS
279
star
89

eb-py-flask-signup

HTML
270
star
90

codepipeline-nested-cfn

CloudFormation templates, CodeBuild build specification & Python scripts to perform unit tests of a nested CloudFormation template.
Python
269
star
91

aws-amplify-auth-starters

Starter projects for developers looking to build web & mobile applications that have Authentication & protected routing
269
star
92

aws-containers-task-definitions

Task Definitions for running common applications Amazon ECS
264
star
93

aws-proton-cloudformation-sample-templates

Sample templates for AWS Proton
262
star
94

aws2tf

aws2tf - automates the importing of existing AWS resources into Terraform and outputs the Terraform HCL code.
Shell
261
star
95

aws-cdk-changelogs-demo

This is a demo application that uses modern serverless architecture to crawl changelogs from open source projects, parse them, and provide an API and website for viewing them.
JavaScript
260
star
96

designing-cloud-native-microservices-on-aws

Introduce a fluent way to design cloud native microservices via EventStorming workshop, this is a hands-on workshop. Contains such topics: DDD, Event storming, Specification by example. Including the AWS product : Serverless Lambda , DynamoDB, Fargate, CloudWatch.
Java
257
star
97

aws-secrets-manager-rotation-lambdas

Contains Lambda functions to be used for automatic rotation of secrets stored in AWS Secrets Manager
Python
256
star
98

lambda-refarch-iotbackend

Serverless Reference Architecture for creating an IoT Backend
Python
251
star
99

aws-health-aware

AHA is an incident management & communication framework to provide real-time alert customers when there are active AWS event(s). For customers with AWS Organizations, customers can get aggregated active account level events of all the accounts in the Organization. Customers not using AWS Organizations still benefit alerting at the account level.
Python
250
star
100

Intelli-Agent

Chatbot Portal with Agent: Streamlined Workflow for Building Agent-Based Applications
Python
250
star