• Stars
    star
    612
  • Rank 73,287 (Top 2 %)
  • Language
    TypeScript
  • License
    MIT No Attribution
  • Created almost 6 years ago
  • Updated 9 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

AWS Bookstore Demo App is a full-stack sample web application that creates a storefront (and backend) for customers to shop for fictitious books. The entire application can be created with a single template. Built on AWS Full-Stack Template.

AWS Bookstore Demo App

AWS Bookstore Demo App is a full-stack sample web application that creates a storefront (and backend) for customers to shop for fictitious books. The entire application can be created with a single CloudFormation template. Try out the deployed application here!

You can browse and search for books, look at recommendations and best sellers, manage your cart, checkout, view your orders, and more. Get started with building your own below!  

License Summary

This sample code is made available under a modified MIT license. See the LICENSE file.

 

Outline

 

Overview

The goal of AWS Bookstore Demo App is to provide a fully-functional web application that utilizes multiple purpose-built AWS databases and native AWS components like Amazon API Gateway and AWS CodePipeline. Increasingly, modern web apps are built using a multitude of different databases. Developers break their large applications into individual components and select the best database for each job. Let's consider AWS Bookstore Demo App as an example. The app contains multiple experiences such a shopping cart, product search, recommendations, and a top sellers list. For each of these use cases, the app makes use of a purpose-built database so the developer never has to compromise on functionality, performance, or scale.

The provided CloudFormation template automates the entire creation and deployment of AWS Bookstore Demo App. The template includes the following components:

Database components

  • Product catalog/shopping cart - Amazon DynamoDB offers fast, predictable performance for the key-value lookups needed in the product catalog, as well as the shopping cart and order history. In this implementation, we have unique identifiers, titles, descriptions, quantities, locations, and price.
  • Search - Amazon Elasticsearch Service enables full-text search for our storefront, enabling users to find products based on a variety of terms including author, title, and category.
  • Recommendations - Amazon Neptune provides social recommendations based on what user's friends have purchased, scaling as the storefront grows with more products, pages, and users.
  • Top sellers list - Amazon ElastiCache for Redis reads order information from Amazon DynamoDB Streams, creating a leaderboard of the “Top 20” purchased or rated books.

Application components

  • Serverless service backend – Amazon API Gateway powers the interface layer between the frontend and backend, and invokes serverless compute with AWS Lambda.
  • Web application blueprint – We include a React web application pre-integrated out-of-the-box with tools such as React Bootstrap, Redux, React Router, internationalization, and more.

Infrastructure components

  • Continuous deployment code pipeline – AWS CodePipeline and AWS CodeBuild help you build, test, and release your application code.
  • Serverless web application – Amazon CloudFront and Amazon S3 provide a globally-distributed application.

You can choose to customize the template to create your own bookstore, modify it to make a different type of store, or change it to make a completely different type of web application.

AWS Bookstore Demo App is built on-top of AWS Full-Stack Template, which provides the foundational services, components, and plumbing needed to get a basic web application up and running. Users can build on top of AWS Full-Stack Template to create any application they envision, whether a travel booking tool, a blog, or another web app. This AWS Bookstore Demo App is just one example of what you can create using AWS Full-Stack Template.

Watch the recorded talk and demo here.  


 

Instructions

IMPORTANT NOTE: Creating this demo application in your AWS account will create and consume AWS resources, which will cost money. We estimate that running this demo application will cost ~$0.45/hour with light usage. Be sure to shut down/remove all resources once you are finished to avoid ongoing charges to your AWS account (see instructions on cleaning up/tear down below).

 

Getting started

To get AWS Bookstore Demo App up and running in your own AWS account, follow these steps (if you do not have an AWS account, please see How do I create and activate a new Amazon Web Services account?):

  1. Log into the AWS console if you are not already.
    Note: If you are logged in as an IAM user, ensure your account has permissions to create and manage the necessary resources and components for this application.
  2. Choose one of the Launch Stack buttons below for your desired AWS region to open the AWS CloudFormation console and create a new stack. AWS Bookstore Demo App is supported in the following regions:
Region name Region code Launch
US East (N. Virginia) us-east-1 Launch Stack
US West (Oregon) us-west-2 Launch Stack
EU (Ireland) eu-west-1 Launch Stack
EU (Frankfurt) eu-central-1 Launch Stack
  1. Continue through the CloudFormation wizard steps
    1. Name your stack, e.g. MyBookstore
    2. Provide a project name (must be lowercase, letters only, and under twelve (12) characters). This is used when naming your resources, e.g. tables, search domain, etc.
    3. After reviewing, check the blue box for creating IAM resources.
  2. Choose Create stack. This will take ~20 minutes to complete.
  3. Once the CloudFormation deployment is complete, check the status of the build in the CodePipeline console and ensure it has succeeded.
  4. Sign into your application
    1. The output of the CloudFormation stack creation will provide a CloudFront URL (in the Outputs table of your stack details page). Click the link or copy and paste the CloudFront URL into your browser.
    2. You can sign into your application by registering an email address and a password. Choose Sign up to explore the demo to register. The registration/login experience is run in your AWS account, and the supplied credentials are stored in Amazon Cognito. Note: given that this is a demo application, we highly suggest that you do not use an email and password combination that you use for other purposes (such as an AWS account, email, or e-commerce site).
    3. Once you provide your credentials, you will receive a verification code at the email address you provided. Upon entering this verification code, you will be signed into the application.

 

Advanced: The source CloudFormation template is available here. If you want to maintain low latency for your app, this deeplink will create an identical stack, but with additional triggers to keep the Lamdba functions "warm" (CloudFormation template here). For more information, see the Considerations for demo purposes section.

 

Cleaning up

To tear down your application and remove all resources associated with AWS Bookstore Demo App, follow these steps:

  1. Log into the Amazon S3 Console and delete the buckets created for the demo app.
    • There should be two buckets created for AWS Bookstore Demo App. The buckets will be titled "X" and "X-pipeline", where "X" is the name you specified in the CloudFormation wizard under the AssetsBucketName parameter.
    • Note: Please be very careful to only delete the buckets associated with this app that you are absolutely sure you want to delete.
  2. Log into the AWS CloudFormation Console and find the stack you created for the demo app
  3. Delete the stack

Remember to shut down/remove all related resources once you are finished to avoid ongoing charges to your AWS account.

 


 

Architecture

Summary diagram

Summary Diagram

 

High-level, end-to-end diagram

High-level Architectural Diagram

 

Frontend

Build artifacts are stored in a S3 bucket where web application assets are maintained (like book cover photos, web graphics, etc.). Amazon CloudFront caches the frontend content from S3, presenting the application to the user via a CloudFront distribution. The frontend interacts with Amazon Cognito and Amazon API Gateway only. Amazon Cognito is used for all authentication requests, whereas API Gateway (and Lambda) is used for all API calls interacting across DynamoDB, Elasticsearch, ElastiCache, and Neptune.

Backend

The core of the backend infrastructure consists of Amazon Cognito, Amazon DynamoDB, AWS Lambda, and Amazon API Gateway. The application leverages Amazon Cognito for user authentication, and Amazon DynamoDB to store all of the data for books, orders, and the checkout cart. As books and orders are added, Amazon DynamoDB Streams push updates to AWS Lambda functions that update the Amazon Elasticsearch cluster and Amazon ElasticCache for Redis cluster. Amazon Elasticsearch powers search functionality for books, and Amazon Neptune stores information on a user's social graph and book purchases to power recommendations. Amazon ElasticCache for Redis powers the books leaderboard.

Backend Diagram

 

Developer Tools

The code is hosted in AWS CodeCommit. AWS CodePipeline builds the web application using AWS CodeBuild. After successfully building, CodeBuild copies the build artifacts into a S3 bucket where the web application assets are maintained (like book cover photos, web graphics, etc.). Along with uploading to Amazon S3, CodeBuild invalidates the cache so users always see the latest experience when accessing the storefront through the Amazon CloudFront distribution. AWS CodeCommit. AWS CodePipeline, and AWS CodeBuild are used in the deployment and update processes only, not while the application is in a steady-state of use.

Developer Tools Diagram

 


 

Implementation details

Note: The provided CloudFormation template contains only a portion of the resources needed to create and run the application. There are web assets (images, etc.), Lambda functions, and other resources called from the template to create the full experience. These resources are stored in a public-facing S3 bucket and referenced in the template.

 

Amazon DynamoDB

The backend of AWS Bookstore Demo App leverages Amazon DynamoDB to enable dynamic scaling and the ability to add features as we rapidly improve our e-commerce application. The application create three tables in DynamoDB: Books, Orders, and Cart. DynamoDB's primary key consists of a partition (hash) key and an optional sort (range) key. The primary key (partition and sort key together) must be unique.

Books Table:

BooksTable {
  id: string (primary partition key)
  author: string
  category: string (index, GSI)
  cover: string (url to s3 file)
  name: string 
  price: number
  rating: number
}

The table's partition key is the ID attribute of a book. The partition key allows you to look up a book with just the ID. Additionally, there is a global secondary index (GSI) on the category attribute. The GSI allows you to run a query on the category attribute and build the books by category experience.

For future updates to the application, we plan to return the results of a search/filter by category via Elasticsearch. Additionally, there is no “description” attribute, as this sample application does not feature pages for individual books. This may be something users wish to add.

 

Orders Table:

OrdersTable {
    customerId: string (primary partition key)
    orderId: string (uuid, primary sort key)
    books: bookDetail[]
    orderDate: date 
}
bookDetail {
    bookId: string
    customerId: string
    quantity: number
    price: number
}

The order table's partition key is the customer ID. This allows us to look up all orders of the customer with just their ID.

 

Cart Table:

CartTable {
    customerId: string (primary partition key)
    bookId: string (uuid, primary sort key)
    price: number
    quantity: number
}

The cart table stores information about a customer's saved cart.

 

Amazon API Gateway

Amazon API Gateway acts as the interface layer between the frontend (Amazon CloudFront, Amazon S3) and AWS Lambda, which calls the backend (databases, etc.). Below are the different APIs the application uses:

Books (DynamoDB)

GET /books (ListBooks)
GET /books/{:id} (GetBook)

Cart (DynamoDB)

GET /cart (ListItemsInCart)
POST /cart (AddToCart)
PUT /cart (UpdateCart)
DELETE /cart (RemoveFromCart)
GET /cart/{:bookId} (GetCartItem)

Orders (DynamoDB)

GET /orders (ListOrders)
POST /orders (Checkout)

Best Sellers (ElastiCache)

GET /bestsellers (GetBestSellers)

Recommendations (Neptune)

GET /recommendations (GetRecommendations)
GET /recommendations/{bookId} (GetRecommendationsByBook)

Search (Elasticsearch)

GET /search (SearchES)

 

AWS Lambda

AWS Lambda is used in a few different places to run the application, as shown in the architecture diagram. The important Lambda functions that are deployed as part of the template are shown below, and available in the functions folder. In the cases where the response fields are blank, the application will return a statusCode 200 or 500 for success or failure, respectively.

 

ListBooks Lambda function that lists the books in the specified product category

ListBooksRequest {
    category?: string (optional parameter)  
}
ListBooksResponse {
    books: book[]
}
book {
    id: string
    category: string
    name: string 
    author: string
    description: string
    rating: number
    price: number
    cover: string
}

 

GetBook Lambda function that will return the properties of a book.

GetBookRequest {
  bookId: string
}
GetBookResponse {
    id: string
    category: string
    name: string 
    author: string
    description: string
    rating: number
    price: number
    cover: string
}

 

ListItemsInCart Lambda function that lists the orders a user has placed.

ListItemsInCartRequest {

}
ListItemsInCartResponse {
    orders[]
}
order {
    customerId: string
    bookId: string
    quantity: number
    price: number
}

 

AddToCart Lambda function that adds a specified book to the user's cart. Price is included in this function's request so that the price is passed into the cart table in DynamoDB. This could reflect that the price in the cart may be different than the price in the catalog (i.e. books table) perhaps due to discounts or coupons.

AddToCartRequest {
    bookId: string
    quantity: number
    price: number
}
AddToCartResponse {

}

 

RemoveFromCart Lambda function that removes a given book from the user's cart.

RemoveFromCartRequest {
    bookId: string
}
RemoveFromCartResponse {

}

 

GetCartItem Lambda function that returns the details of a given item the user's cart.

GetCartItemRequest {
    bookId: string
}
GetCartItemResponse {
    customerId: string
    bookId: string
    quantity: number
    price: number
}

 

UpdateCart Lambda function that updates the user's cart with a new quantity of a given book.

UpdateCartRequest {
    bookId: string
    quantity: number
}
UpdateCartResponse {
    
}

 

ListOrders Lambda function that lists the orders for a user.

ListOrdersRequest {

}
ListOrdersResponse {
    customerId: string 
    orderId: string
    orderDate: date
    books: bookDetail[]
}
bookDetail {
    bookId: string
    price: number
    quantity: number
}

 

Checkout Lambda function that moves the contents of a user's cart (the books) into the checkout flow, where you can then integrate with payment, etc.

CheckoutRequest {
    books: bookDetail[]
}
bookDetail {
    bookId: string
    price: number
    quantity: number
}
CheckoutResponse {

}

In addition to the above, the Checkout Lambda function acts as a sort of mini-workflow with the following tasks:

  1. Add all books from the Cart table to the Orders table
  2. Remove all entries from the Cart table for the requested customer ID

 

GetBestSellers Lambda function that returns a list of the best-sellers.

GetBestSellersRequest {

}
GetBestSellersResponse {
    bookIds: string[]
}

 

GetRecommendations Lambda function that returns a list of recommended books based on the purchase history of a user's friends.

GetRecommendationsRequest {

}
GetRecommendationsResponse {
    recommendations: recommendation[]
}
recommendation {
    bookId: string
    friendsPurchased: customerId[]
    purchases: number
}
customerId: string

 

GetRecommendationsByBook Lambda function that returns a list of friends who have purchased this book as well as the total number of times it was purchased by those friends.

GetRecommendationsByBookRequest {
    bookId: string
}
GetRecommendationsByBookResponse {
    friendsPurchased: customerId[]
    purchased: number
}
customerId: string

 

Other Lambda functions There are a few other Lambda functions used to make AWS Bookstore Demo App work, and they are listed here:

  1. Search - Lambda function that returns a list of books based on provided search parameters in the request.
  2. updateSearchCluster - Lambda function that updates the Elasticsearch cluster when new books are added to the store.
  3. updateBestsellers - Updates Leaderboard via the ElastiCache for Redis cluster as orders are placed.

 

Amazon ElastiCache for Redis

Amazon ElastiCache for Redis is used to provide the best sellers/leaderboard functionality. In other words, the books that are the most ordered will be shown dynamically at the top of the best sellers list.

For the purposes of creating the leaderboard, AWS Bookstore Demo App utilized ZINCRBY, which “Increments the score of member in the sorted set stored at key byincrement. If member does not exist in the sorted set, it is added with increment as its score (as if its previous score was 0.0). If key does not exist, a new sorted set with the specified member as its sole member is created.”

The information to populate the leaderboard is provided from DynamoDB via DynamoDB Streams. Whenever an order is placed (and subsequently created in the Orders table), this is streamed to Lambda, which updates the cache in ElastiCache for Redis. The Lambda function used to pass this information is UpdateBestSellers.

 

Amazon Neptune

Neptune provides a social graph that consists of users, books. Recommendations are only provided for books that have been purchased (i.e. in the list of orders). The “top 5” book recommendations are shown on the bookstore homepage.

 

Amazon Elasticsearch

Amazon Elasticsearch Service powers the search capability in the bookstore web application, available towards the top of every screen in a search bar. Users can search by title, author, and category. The template creates a search domain in the Elasticsearch service.

It is important that a service-linked role is created first (included in the CloudFormation template).

 

AWS IAM

ListBooksLambda AWSLambdaBasicExecutionRole
dynamodb:Scan - table/Books/index/category-index
dynamodb:Query - table/Books

GetBookLambda AWSLambdaBasicExecutionRole
dynamodb:GetItem - table/Books

ListItemsInCartLambda AWSLambdaBasicExecutionRole
dynamodb:Query - table/Cart

AddToCartLambda AWSLambdaBasicExecutionRole
dynamodb:PutItem - table/Cart

UpdateCartLambda AWSLambdaBasicExecutionRole
dynamodb:UpdateItem - table/Cart

ListOrdersLambda AWSLambdaBasicExecutionRole
dynamodb:Query - table/Orders

CheckoutLambda AWSLambdaBasicExecutionRole
dynamodb:PutItem - table/Orders
dynamoDB:DeleteItem - table/Cart

 

Amazon Cognito

Amazon Cognito handles user account creation and login for the bookstore application. For the purposes of the demo, the bookstore is only available to browse after login, which could represent the architecture of different types of web apps. Users can also choose to separate the architecture, where portions of the web app are publicly available and others are available upon login.

User Authentication

  • Email address

Amazon Cognito passes the CognitoIdentityID (which AWS Bookstore Demo app uses as the Customer ID) for every user along with every request from Amazon API Gateway to Lambda, which helps the services authenticate against which user is doing what.

 

Amazon CloudFront and Amazon S3

Amazon CloudFront hosts the web application frontend that users interface with. This includes web assets like pages and images. For demo purposes, CloudFormation pulls these resources from S3.

 

Amazon VPC

Amazon VPC (Virtual Private Cloud) is used with Amazon Elasticsearch Service, Amazon ElastiCache for Redis, and Amazon Neptune.

 

Amazon CloudWatch

The capabilities provided by CloudWatch are not exposed to the end users of the web app, rather the developer/administrator can use CloudWatch logs, alarms, and graphs to track the usage and performance of their web application.

 

AWS CodeCommit, AWS CodePipeline, AWS CodeBuild

Similar to CloudWatch, the capabilities provided by CodeCommit, CodePipeline, and CodeBuild are not exposed to the end users of the web app. The developer/administrator can use these tools to help stage and deploy the application as it is updated and improved.

 


 

Running your web application locally

  1. If you haven't setup Git credentials for AWS CodeCommit before, head to the IAM Console. If you have already you can skip to step 5.

  2. Choose your IAM user.

  3. Choose the Security credentials tab. Scroll to the bottom and choose Generate underneath HTTPS Git credentials for AWS CodeCommit.

  4. Download and save these credentials. You will use these credentials when cloning your repository.  

  5. Go to the CodeCommit console and find your code repository.

  6. Choose the HTTPS button underneath the Clone URL column.

  7. Open up your terminal, type git clone paste the Clone URL and hit enter.  

  8. Once the repository has created, run npm install.

  9. After all dependencies have been downloaded, run npm run start.  

You're done! Any future updates you make to your repository will get pushed to your code pipeline automatically and published to your web application endpoint.

 


 

Considerations for demo purposes

  1. In order to make AWS Bookstore Demo App an effective demonstration from the moment it is created, the CloudFormation template kicks off a Lambda function we wrote to pre-load a list of books into the product catalog (the Books table in DynamoDB). In the same way, we used a Lambda function to pre-load sample friends (into Neptune) and manually populated the list of Best Sellers (on the front page only). This enables you to sign up as a new user and immediately see what the running store would look like, including recommendations based on what friends have purchased and what the best-selling books section does.

  2. You will notice that the Past orders and Best sellers pages are empty at first run. These are updated as soon as an order is placed.

  3. For the purposes of this demo, we did not include a method to add or remove friends, and decided that every new user will be friends with everyone else (not the most realistic, but effective for this demo). You are welcome to play around with changing this, adding friend control functionality, or manually editing friendships via the bookstore-friends-edges.csv file.

  4. Web assets (pages, images, etc.) are pulled from a public S3 bucket via the CloudFormation template to create the frontend for AWS Bookstore Demo App. When building your own web application (or customizing this one), you will likely pull from your own S3 buckets. If you customize the lambda functions, you will want to store these separately, as well.

  5. Checkout is a simplified demo experience that customers can take and implement a real-world payment processing platform. Similarly, the View Receipt button after purchase is non-functional, meant to demonstrate how you can add on to the app.

  6. The CloudFormation template referenced in #2 of the Getting started section is everything you need to create the full-stack application. However, when the application is newly created, or hasn't been used in some time, it may take a few extra seconds to run the Lamdba functions, which increases the latency of operations like search and listing books. If you want to maintain low latency for your app, this deeplink creates an identical stack but with additional triggers to keep the Lamdba functions "warm." Given that these triggers make the Lamdba functions run more frequently (every 10 minutes, on a schedule), this will add a small amount to the overall cost to run the application. The benefit is a more responsive application even when the Lamdba functions are not being regularly called by user activity.

 


 

Known limitations

  • The application was written for demonstration purposes and not for production use.
  • Orders are backed by DynamoDB, but no mechanism exists to recreate the best sellers list in the unlikely scenario of a Redis failure.
  • Upon the first use of a Lambda function, cold start times in a VPC can be slow. Once the Lambda function has been warmed up, performance will improve. See #6 in Considerations for demo purposes for more information.
  • The application is not currently designed for for high availability. You can increase the availability of the application by configuring the Amazon Elasticsearch, Amazon Neptune, and Amazon ElastiCache clusters with multiple instances across multiple AZs.
  • The application enables multiple users to sign into the application but the social graph is single user. As a result, different users will see the same social graph. Further, when new books are purchased, that state is not reflected in the social graph.
  • There are some network errors observed on Firefox. We are looking into this.

 


 

Additions, forks, and contributions

We are excited that you are interested in using AWS Bookstore Demo App! This is a great place to start if you are just beginning with AWS and want to get a functional application up and running. It is equally useful if you are looking for a sample full-stack application to fork off of and build your own custom application. We encourage developer participation via contributions and suggested additions. Of course you are welcome to create your own version!

Please see the contributing guidelines for more information.

For a more basic example of a full-stack web application, check out AWS Full-Stack Template upon which AWS Bookstore Demo App was built. As mentioned in the Overview section, AWS Full-Stack Template provides the foundational services, components, and plumbing needed to get a basic web application up and running. Users can build on top of AWS Full-Stack Template to create any application they envision, whether a travel booking tool, a blog, or another web app. This AWS Bookstore Demo App is just one example of what you can create using AWS Full-Stack Template.

 


 

Questions and contact

For questions on AWS Bookstore Demo App, or to contact the team, please leave a comment on GitHub.

More Repositories

1

aws-cdk-examples

Example projects using the AWS CDK
Python
4,121
star
2

aws-serverless-workshops

Code and walkthrough labs to set up serverless applications for Wild Rydes workshops
JavaScript
3,977
star
3

aws-workshop-for-kubernetes

AWS Workshop for Kubernetes
Shell
2,618
star
4

aws-machine-learning-university-accelerated-nlp

Machine Learning University: Accelerated Natural Language Processing Class
Jupyter Notebook
2,080
star
5

aws-serverless-airline-booking

Airline Booking is a sample web application that provides Flight Search, Flight Payment, Flight Booking and Loyalty points including end-to-end testing, GraphQL and CI/CD. This web application was the theme of Build on Serverless Season 2 on AWS Twitch running from April 24th until end of August in 2019.
Vue
1,967
star
6

ecs-refarch-cloudformation

A reference architecture for deploying containerized microservices with Amazon ECS and AWS CloudFormation (YAML)
Makefile
1,673
star
7

lambda-refarch-webapp

The Web Application reference architecture is a general-purpose, event-driven, web application back-end that uses AWS Lambda, Amazon API Gateway for its business logic. It also uses Amazon DynamoDB as its database and Amazon Cognito for user management. All static content is hosted using AWS Amplify Console.
JavaScript
1,561
star
8

serverless-patterns

Serverless patterns. Learn more at the website: https://serverlessland.com/patterns.
Python
1,544
star
9

aws-modern-application-workshop

A tutorial for developers that want to learn about how to build modern applications on top of AWS. You will build a sample website that leverages infrastructure as code, containers, serverless code functions, CI/CD, and more.
1,459
star
10

amazon-bedrock-workshop

This is a workshop designed for Amazon Bedrock a foundational model service.
Jupyter Notebook
1,419
star
11

aws-machine-learning-university-accelerated-cv

Machine Learning University: Accelerated Computer Vision Class
Jupyter Notebook
1,409
star
12

aws-glue-samples

AWS Glue code samples
Python
1,277
star
13

aws-deepracer-workshops

DeepRacer workshop content
Jupyter Notebook
1,086
star
14

aws-genai-llm-chatbot

A modular and comprehensive solution to deploy a Multi-LLM and Multi-RAG powered chatbot (Amazon Bedrock, Anthropic, HuggingFace, OpenAI, Meta, AI21, Cohere, Mistral) using AWS CDK on AWS
TypeScript
1,061
star
15

aws-refarch-wordpress

This reference architecture provides best practices and a set of YAML CloudFormation templates for deploying WordPress on AWS.
PHP
1,001
star
16

aws-machine-learning-university-accelerated-tab

Machine Learning University: Accelerated Tabular Data Class
Jupyter Notebook
955
star
17

aws-serverless-ecommerce-platform

Serverless Ecommerce Platform is a sample implementation of a serverless backend for an e-commerce website. This sample is not meant to be used as an e-commerce platform as-is, but as an inspiration on how to build event-driven serverless microservices on AWS.
Python
947
star
18

aws-big-data-blog

Java
895
star
19

machine-learning-samples

Sample applications built using AWS' Amazon Machine Learning.
Python
867
star
20

eks-workshop

AWS Workshop for Learning EKS
CSS
777
star
21

startup-kit-templates

CloudFormation templates to accelerate getting started on AWS.
Python
760
star
22

aws-incident-response-playbooks

756
star
23

aws-security-reference-architecture-examples

Example solutions demonstrating how to implement patterns within the AWS Security Reference Architecture guide using CloudFormation and Customizations for AWS Control Tower.
Python
731
star
24

retail-demo-store

AWS Retail Demo Store is a sample retail web application and workshop platform demonstrating how AWS infrastructure and services can be used to build compelling customer experiences for eCommerce, retail, and digital marketing use-cases
Jupyter Notebook
708
star
25

lambda-refarch-imagerecognition

The Image Recognition and Processing Backend reference architecture demonstrates how to use AWS Step Functions to orchestrate a serverless processing workflow using AWS Lambda, Amazon S3, Amazon DynamoDB and Amazon Rekognition.
JavaScript
662
star
26

aws-secure-environment-accelerator

The AWS Secure Environment Accelerator is a tool designed to help deploy and operate secure multi-account, multi-region AWS environments on an ongoing basis. The power of the solution is the configuration file which enables the completely automated deployment of customizable architectures within AWS without changing a single line of code.
HTML
653
star
27

simple-websockets-chat-app

This SAM application provides the Lambda functions, DynamoDB table, and roles to allow you to build a simple chat application based on API Gateway's new WebSocket-based API feature.
JavaScript
632
star
28

aws-codedeploy-samples

Samples and template scenarios for AWS CodeDeploy
Shell
627
star
29

emr-bootstrap-actions

This repository hold the Amazon Elastic MapReduce sample bootstrap actions
Shell
612
star
30

generative-ai-use-cases-jp

すぐに業務活用できるビジネスユースケース集付きの安全な生成AIアプリ実装
TypeScript
611
star
31

aws-lex-web-ui

Sample Amazon Lex chat bot web interface
JavaScript
607
star
32

hardeneks

Runs checks to see if an EKS cluster follows EKS Best Practices.
Python
603
star
33

lambda-refarch-mobilebackend

Serverless Reference Architecture for creating a Mobile Backend
Objective-C
584
star
34

amazon-personalize-samples

Notebooks and examples on how to onboard and use various features of Amazon Personalize
Jupyter Notebook
572
star
35

aws-serverless-workshop-innovator-island

Welcome to the Innovator Island serverless workshop! This repo contains all the instructions and code you need to complete the workshop.
JavaScript
564
star
36

kubernetes-for-java-developers

A Day in Java Developer’s Life, with a taste of Kubernetes
Java
562
star
37

aws-iot-chat-example

💬 Chat application using AWS IoT platform via MQTT over the WebSocket protocol
JavaScript
534
star
38

aws-dynamodb-examples

DynamoDB Examples
JavaScript
532
star
39

aws-amplify-graphql

Sample using AWS Amplify and AWS AppSync together for user login and authorization when making GraphQL queries and mutations. Also includes complex objects for uploading and downloading data to and from S3 with a React app.
JavaScript
521
star
40

aws-mobile-appsync-chat-starter-angular

GraphQL starter progressive web application (PWA) with Realtime and Offline functionality using AWS AppSync
TypeScript
520
star
41

aws-serverless-security-workshop

In this workshop, you will learn techniques to secure a serverless application built with AWS Lambda, Amazon API Gateway and RDS Aurora. We will cover AWS services and features you can leverage to improve the security of a serverless applications in 5 domains: identity & access management, code, data, infrastructure, logging & monitoring.
JavaScript
505
star
42

amazon-forecast-samples

Notebooks and examples on how to onboard and use various features of Amazon Forecast.
Jupyter Notebook
471
star
43

lambda-refarch-fileprocessing

Serverless Reference Architecture for Real-time File Processing
Python
450
star
44

ecs-blue-green-deployment

Reference architecture for doing blue green deployments on ECS.
Python
442
star
45

cloudfront-authorization-at-edge

Protect downloads of your content hosted on CloudFront with Cognito authentication using cookies and Lambda@Edge
TypeScript
439
star
46

aws-service-catalog-reference-architectures

Sample CloudFormation templates and architecture for AWS Service Catalog
JavaScript
430
star
47

amazon-bedrock-samples

This repository contains examples for customers to get started using the Amazon Bedrock Service. This contains examples for all available foundational models
Jupyter Notebook
422
star
48

siem-on-amazon-opensearch-service

A solution for collecting, correlating and visualizing multiple types of logs to help investigate security incidents.
Python
409
star
49

aws-microservices-deploy-options

This repo contains a simple application that consists of three microservices. Each application is deployed using different Compute options on AWS.
Jsonnet
407
star
50

aws-cost-explorer-report

Python SAM Lambda module for generating an Excel cost report with graphs, including month on month cost changes. Uses the AWS Cost Explorer API for data.
Python
406
star
51

aws-security-workshops

A collection of the latest AWS Security workshops
Jupyter Notebook
401
star
52

aws-sam-java-rest

A sample REST application built on SAM and DynamoDB that demonstrates testing with DynamoDB Local.
Java
400
star
53

amazon-elasticsearch-lambda-samples

Data ingestion for Amazon Elasticsearch Service from S3 and Amazon Kinesis, using AWS Lambda: Sample code
JavaScript
393
star
54

amazon-textract-textractor

Analyze documents with Amazon Textract and generate output in multiple formats.
Jupyter Notebook
390
star
55

amazon-cloudfront-functions

JavaScript
388
star
56

aws-saas-factory-bootcamp

SaaS on AWS Bootcamp - Building SaaS Solutions on AWS
JavaScript
376
star
57

aws-lambda-extensions

A collection of sample extensions to help you get started with AWS Lambda Extensions
Go
376
star
58

amazon-sagemaker-notebook-instance-lifecycle-config-samples

A collection of sample scripts to customize Amazon SageMaker Notebook Instances using Lifecycle Configurations
Shell
366
star
59

non-profit-blockchain

Builds a blockchain network and application to track donations to non-profit organizations, using Amazon Managed Blockchain
SCSS
360
star
60

amazon-textract-code-samples

Amazon Textract Code Samples
Jupyter Notebook
355
star
61

amazon-neptune-samples

Samples and documentation for using the Amazon Neptune graph database service
JavaScript
355
star
62

lambda-refarch-streamprocessing

Serverless Reference Architecture for Real-time Stream Processing
JavaScript
349
star
63

amazon-ecs-java-microservices

This is a reference architecture for java microservice on Amazon ECS
Java
345
star
64

sessions-with-aws-sam

This repo contains all the SAM templates created in the Twitch series #SessionsWithSAM. The show is every Thursday on Twitch at 10 AM PDT.
JavaScript
343
star
65

amazon-rekognition-video-analyzer

A working prototype for capturing frames off of a live MJPEG video stream, identifying objects in near real-time using deep learning, and triggering actions based on an objects watch list.
JavaScript
343
star
66

aws-eks-accelerator-for-terraform

The AWS EKS Accelerator for Terraform is a framework designed to help deploy and operate secure multi-account, multi-region AWS environments. The power of the solution is the configuration file which enables the users to provide a unique terraform state for each cluster and manage multiple clusters from one repository. This code base allows users to deploy EKS add-ons using Helm charts.
HCL
338
star
67

aws-deepcomposer-samples

Jupyter Notebook
336
star
68

amazon-ecs-mythicalmysfits-workshop

A tutorial for developers who want to learn about how to containerized applications on top of AWS using AWS Fargate. You will build a sample website that leverages infrastructure as code, containers, CI/CD, and more! If you're planning on running this, let us know @ [email protected]. At re:Invent 2018, these sessions were run as CON214/CON321/CON322.
HTML
334
star
69

aws-iot-examples

Examples using AWS IoT (Internet of Things). Deprecated. See README for updated guidance.
JavaScript
331
star
70

aws-media-services-simple-vod-workflow

Lab that covers video conversion workflow for Video On Demand using AWS MediaConvert.
Python
328
star
71

php-examples-for-aws-lambda

Demo serverless applications, examples code snippets and resources for PHP
PHP
324
star
72

aws-serverless-cicd-workshop

Learn how to build a CI/CD pipeline for SAM-based applications
CSS
317
star
73

create-react-app-auth-amplify

Implements a basic authentication flow for signing up/signing in users as well as protected client side routing using AWS Amplify.
JavaScript
314
star
74

api-gateway-secure-pet-store

Amazon API Gateway sample using Amazon Cognito credentials through AWS Lambda
Objective-C
309
star
75

aws-etl-orchestrator

A serverless architecture for orchestrating ETL jobs in arbitrarily-complex workflows using AWS Step Functions and AWS Lambda.
Python
307
star
76

amazon-textract-serverless-large-scale-document-processing

Process documents at scale using Amazon Textract
Python
302
star
77

lambda-go-samples

An example of using AWS Lambda with Go
Go
302
star
78

amazon-cloudfront-secure-static-site

Create a secure static website with CloudFront for your registered domain.
JavaScript
300
star
79

amazon-ecs-firelens-examples

Sample logging architectures for FireLens on Amazon ECS and AWS Fargate.
300
star
80

aws-nodejs-sample

Sample project to demonstrate usage of the AWS SDK for Node.js
JavaScript
299
star
81

aws-cognito-apigw-angular-auth

A simple/sample AngularV4-based web app that demonstrates different API authentication options using Amazon Cognito and API Gateway with an AWS Lambda and Amazon DynamoDB backend that stores user details in a complete end to end Serverless fashion.
JavaScript
297
star
82

lambda-ecs-worker-pattern

This example code illustrates how to extend AWS Lambda functionality using Amazon SQS and the Amazon EC2 Container Service (ECS).
POV-Ray SDL
291
star
83

aws-lambda-fanout

A sample AWS Lambda function that accepts messages from an Amazon Kinesis Stream and transfers the messages to another data transport.
JavaScript
289
star
84

aws-saas-factory-ref-solution-serverless-saas

Python
286
star
85

aws-mlu-explain

Visual, Interactive Articles About Machine Learning: https://mlu-explain.github.io/
JavaScript
285
star
86

aws-serverless-shopping-cart

Serverless Shopping Cart is a sample implementation of a serverless shopping cart for an e-commerce website.
Python
282
star
87

aws-serverless-samfarm

This repo is full CI/CD Serverless example which was used in the What's New with AWS Lambda presentation at Re:Invent 2016.
JavaScript
280
star
88

eb-node-express-sample

Sample Express application for AWS Elastic Beanstalk
EJS
279
star
89

eb-py-flask-signup

HTML
270
star
90

codepipeline-nested-cfn

CloudFormation templates, CodeBuild build specification & Python scripts to perform unit tests of a nested CloudFormation template.
Python
269
star
91

aws-amplify-auth-starters

Starter projects for developers looking to build web & mobile applications that have Authentication & protected routing
269
star
92

aws-containers-task-definitions

Task Definitions for running common applications Amazon ECS
264
star
93

aws-proton-cloudformation-sample-templates

Sample templates for AWS Proton
262
star
94

aws2tf

aws2tf - automates the importing of existing AWS resources into Terraform and outputs the Terraform HCL code.
Shell
261
star
95

aws-cdk-changelogs-demo

This is a demo application that uses modern serverless architecture to crawl changelogs from open source projects, parse them, and provide an API and website for viewing them.
JavaScript
260
star
96

designing-cloud-native-microservices-on-aws

Introduce a fluent way to design cloud native microservices via EventStorming workshop, this is a hands-on workshop. Contains such topics: DDD, Event storming, Specification by example. Including the AWS product : Serverless Lambda , DynamoDB, Fargate, CloudWatch.
Java
257
star
97

aws-secrets-manager-rotation-lambdas

Contains Lambda functions to be used for automatic rotation of secrets stored in AWS Secrets Manager
Python
256
star
98

lambda-refarch-iotbackend

Serverless Reference Architecture for creating an IoT Backend
Python
251
star
99

aws-health-aware

AHA is an incident management & communication framework to provide real-time alert customers when there are active AWS event(s). For customers with AWS Organizations, customers can get aggregated active account level events of all the accounts in the Organization. Customers not using AWS Organizations still benefit alerting at the account level.
Python
250
star
100

Intelli-Agent

Chatbot Portal with Agent: Streamlined Workflow for Building Agent-Based Applications
Python
250
star