Unsupervised Adversarial Depth Estimation using Cycled Generative Networks
The code for "Unsupervised Adversarial Depth Estimation using Cycled Generative Networks" in 3DV2018
Paper link: https://arxiv.org/pdf/1807.10915.pdf
By Andrea Pilzer, Dan Xu, Mihai Puscas, Elisa Ricci, Nicu Sebe
Content
The experiments are performed on a HPC server with Python 3.6 and Tensorflow 1.10.
1. Training and testing
Training
python main.py --dataset kitti --filenames_file utils/filenames/eigen_train_files_png.txt \
--data_path /path/to/KITTI/ --do_stereo --train_branch b2a
Testing
python main.py --mode test --dataset kitti --filenames_file utils/filenames/eigen_test_files_png.txt \
--data_path /path/to/KITTI/ --do_stereo --checkpoint_path my_model/model-5000
Please note that there is NO extension after the checkpoint name
Evaluation
python utils/evaluate_kitti.py --split kitti --predicted_disp_path my_model/disparities.npy \
--gt_path ~/data/KITTI/
2. Datasets
We used the KITTI dataset in our experiments. Please refer to a very well written dataset description section of Monodepth for data preparation.
3. Trained model
The pretrained model can be downloaded from Google Drive.
4. Citation
Please condiser citing our paper if you find the code is useful for your projects:
@inproceedings{pilzer2018unsupervised, title={Unsupervised Adversarial Depth Estimation using Cycled Generative Networks}, author={Pilzer, Andrea and Xu, Dan and Puscas, Mihai and Ricci, Elisa and Sebe, Nicu}, booktitle={2018 International Conference on 3D Vision (3DV)}, pages={587--595}, year={2018}, organization={IEEE} } @article{pilzer2019progressive, title={Progressive Fusion for Unsupervised Binocular Depth Estimation using Cycled Networks}, author={Pilzer, Andrea and Lathuili{\`e}re, St{\'e}phane and Xu, Dan and Puscas, Mihai Marian and Ricci, Elisa and Sebe, Nicu}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year={2019}, publisher={IEEE} }