• Stars
    star
    188
  • Rank 205,563 (Top 5 %)
  • Language
    Python
  • License
    MIT License
  • Created over 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

[ECCV 2020] DADA: Differentiable Automatic Data Augmentation

DADA: Differentiable Automatic Data Augmentation

Contact us with [email protected], [email protected].

Introduction

The official code for our ECCV 2020 paper DADA: Differentiable Automatic Data Augmentation, which is at least one order of magnitude faster than the state-of-the-art data augmentation (DA) policy search algorithms while achieving very comparable accuracy. The implementation of our training part is based on fast-autoaugment.

License

The project is only free for academic research purposes, but needs authorization for commerce. For commerce permission, please contact [email protected].

Citation

If you use our code/model, please consider to cite our ECCV 2020 paper DADA: Differentiable Automatic Data Augmentation [arXiv] [ECCV].

@article{li2020dada,
  author    = {Yonggang Li and
               Guosheng Hu and
               Yongtao Wang and
               Timothy M. Hospedales and
               Neil Martin Robertson and
               Yongxin Yang},
  title     = {{DADA:} Differentiable Automatic Data Augmentation},
  booktitle = {The European Conference on Computer Vision (ECCV)},
  year      = {2020}
}

Model

We provide the checkpoints in BaiduDrive, with fetching code sgap, or GoogleDrive.

CIFAR-10

Search : 0.1 GPU Hours, WResNet-40x2 on Reduced CIFAR-10

Dataset Model Baseline Cutout AA PBA Fast AA DADA
CIFAR-10 Wide-ResNet-40-2 5.3 4.1 3.7 - 3.6 3.6
CIFAR-10 Wide-ResNet-28-10 3.9 3.1 2.6 2.6 2.7 2.7
CIFAR-10 Shake-Shake(26 2x32d) 3.6 3.0 2.5 2.5 2.7 2.7
CIFAR-10 Shake-Shake(26 2x96d) 2.9 2.6 2.0 2.0 2.0 2.0
CIFAR-10 Shake-Shake(26 2x112d) 2.8 2.6 1.9 2.0 2.0 2.0
CIFAR-10 PyramidNet+ShakeDrop 2.7 2.3 1.5 1.5 1.8 1.7

CIFAR-100

Search : 0.2 GPU Hours, WResNet-40x2 on Reduced CIFAR-100

Dataset Model Baseline Cutout AA PBA Fast AA DADA
CIFAR-100 Wide-ResNet-40-2 26.0 25.2 20.7 - 20.7 20.9
CIFAR-100 Wide-ResNet-28-10 18.8 18.4 17.1 16.7 17.3 17.5
CIFAR-100 Shake-Shake(26 2x96d) 17.1 16.0 14.3 15.3 14.9 15.3
CIFAR-100 PyramidNet+ShakeDrop 14.0 12.2 10.7 10.9 11.9 11.2

SVHN

Search : 0.1 GPU Hours, WResNet-28x10 on Reduced SVHN

Dataset Model Baseline Cutout AA PBA Fast AA DADA
SVHN Wide-ResNet-28-10 1.5 1.3 1.1 1.2 1.1 1.2
SVHN Shake-Shake(26 2x96d) 1.4 1.2 1.0 1.1 - 1.1

ImageNet

Search : 1.3 GPU Hours, ResNet-50 on Reduced ImageNet

Dataset Baseline AA Fast AA OHL AA DADA
ImageNet 23.7 / 6.9 ~22.4 / 6.2 22.4 / 6.3 21.1 / 5.7 22.5 / 6.5

Installation

Environment

  1. Ubuntu 16.04 LTS
  2. CUDA 10.0
  3. PyTorch 1.2.0
  4. TorchVision 0.4.0

Install

a. Create a conda virtual environment and activate it.

conda create -n dada-env python=3.6.10
source activate dada-env # or conda activate dada-env

b. Install PyTorch and torchvision following the official instructions, e.g.,

conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit==10.0

c. Install other python package for DADA and fast-autoaugment, e.g.,

# for training and inference
pip install -r fast-autoaugment/requirements.txt

# for searching
pip install -r requirements.txt

Getting Started

Prepare Datasets

The dataset (except ImageNet) will be automatically download if you keep the default setting. You should put the data in ./data as below: (which include the datasets of CIFAR-10, CIFAR-100, SVHN, and ImageNet)

# CIFAR-10
./data/cifar-10-python.tar.gz

# CIFAR-100
./data/cifar-100-python.tar.gz

# SVHN
./data/train_32x32.mat
./data/extra_32x32.mat
./data/test_32x32.mat

# ImageNet
./data/imagenet-pytorch/
./data/imagenet-pytorch/meta.bin
./data/imagenet-pytorch/train
./data/imagenet-pytorch/val

Inference

Download the model-pth provided in , put them in ./fast-autoaugment/weights

cd fast-autoaugment
sh inference.sh

For example, you can test the provided wresnet40x2 model trained on CIFAR-10 as below:

# TITAN
GPUS=0
SEED=0
DATASET=cifar10
CONF=confs/wresnet40x2_cifar10_b512_test.yaml
GENOTYPE=CIFAR10
SAVE=weights/`basename ${CONF} .yaml`_${GENOTYPE}_${DATASET}_${SEED}/test.pth
CUDA_VISIBLE_DEVICES=${GPUS} python FastAutoAugment/train.py -c ${CONF} --dataset ${DATASET} --genotype ${GENOTYPE} --save ${SAVE} --seed ${SEED} --only-eval --batch 32

Train

The training script is provided, including most experiments of our paper.

cd fast-autoaugment
sh train.sh

For example, you can train a wresnet40x2 model on CIFAR-10 as below:

# TITAN
GPUS=0
SEED=0
DATASET=cifar10
CONF=confs/wresnet40x2_cifar10_b512_test.yaml
GENOTYPE=CIFAR10
SAVE=weights/`basename ${CONF} .yaml`_${GENOTYPE}_${DATASET}_${SEED}/test.pth
CUDA_VISIBLE_DEVICES=${GPUS} python FastAutoAugment/train.py -c ${CONF} --dataset ${DATASET} --genotype ${GENOTYPE} --save ${SAVE} --seed ${SEED}

Search

The searching script is provided, including CIFAR10, CIFAR100, SVHN, and ImageNet.

cd search_relax
sh train_paper.sh

For example, you can search a DA policy on the reduced-cifar10 dataset with wresnet40-2 model as below:

# you can change the hyper-parameters as below:
GPU=0
DATASET=reduced_cifar10
MODEL=wresnet40_2
EPOCH=20
BATCH=128
LR=0.1
WD=0.0002
AWD=0.0
ALR=0.005
CUTOUT=16
TEMPERATE=0.5
SAVE=CIFAR10
python train_search_paper.py --unrolled --report_freq 1 --num_workers 0 --epoch ${EPOCH} --batch_size ${BATCH} --learning_rate ${LR} --dataset ${DATASET} --model_name ${MODEL} --save ${SAVE} --gpu ${GPU} --arch_weight_decay ${AWD} --arch_learning_rate ${ALR} --weight_decay ${WD} --cutout --cutout_length ${CUTOUT} --temperature ${TEMPERATE}

The code for DADA with gumbel softmax is also included in this repository.

cd search_gumbel
sh train_paper.sh

Found Policy

We relase the found Data Augmentation policies in CIFAR-10, CIFAR-100, SVHN, and ImageNet by our DADA as below. The origin DA policies have been included in the fast-autoaugment/FastAutoAugment/genotype.py. You can find the genotype used by our paper as below:

vim fast-autoaugment/FastAutoAugment/genotype.py

CIFAR10

Sub-policy Opeartion 1 Opeartion 2
sub-policy 0 (TranslateX, 0.52, 0.58) (Rotate, 0.57, 0.53)
sub-policy 1 (ShearX, 0.50, 0.46) (Sharpness, 0.50, 0.54)
sub-policy 2 (Brightness, 0.56, 0.56) (Sharpness, 0.52, 0.47)
sub-policy 3 (ShearY, 0.62, 0.48) (Brightness, 0.47, 0.46)
sub-policy 4 (ShearX, 0.44, 0.58) (TranslateY, 0.40, 0.51)
sub-policy 5 (Rotate, 0.40, 0.52) (Equalize, 0.38, 0.36)
sub-policy 6 (AutoContrast, 0.44, 0.48) (Cutout, 0.49, 0.50)
sub-policy 7 (AutoContrast, 0.56, 0.48) (Color, 0.45, 0.61)
sub-policy 8 (Rotate, 0.42, 0.64) (AutoContrast, 0.60, 0.58)
sub-policy 9 (Invert, 0.40, 0.50) (Color, 0.50, 0.44)
sub-policy 10 (Posterize, 0.56, 0.50) (Brightness, 0.53, 0.48)
sub-policy 11 (TranslateY, 0.42, 0.51) (AutoContrast, 0.38, 0.57)
sub-policy 12 (ShearX, 0.38, 0.50) (Contrast, 0.49, 0.52)
sub-policy 13 (ShearY, 0.54, 0.60) (Rotate, 0.31, 0.56)
sub-policy 14 (Posterize, 0.42, 0.50) (Color, 0.45, 0.56)
sub-policy 15 (TranslateX, 0.41, 0.45) (TranslateY, 0.36, 0.48)
sub-policy 16 (TranslateX, 0.57, 0.50) (Brightness, 0.54, 0.48)
sub-policy 17 (TranslateX, 0.53, 0.51) (Cutout, 0.69, 0.49)
sub-policy 18 (ShearX, 0.46, 0.44) (Invert, 0.42, 0.40)
sub-policy 19 (Rotate, 0.50, 0.42) (Contrast, 0.49, 0.42)
sub-policy 20 (Rotate, 0.43, 0.47) (Solarize, 0.50, 0.42)
sub-policy 21 (TranslateY, 0.74, 0.51) (Color, 0.39, 0.57)
sub-policy 22 (Equalize, 0.42, 0.53) (Sharpness, 0.40, 0.43)
sub-policy 23 (Solarize, 0.73, 0.42) (Cutout, 0.51, 0.46)
sub-policy 24 (ShearX, 0.58, 0.56) (TranslateX, 0.48, 0.49)

CIFAR-100

Sub-policy Opeartion 1 Opeartion 2
sub-policy 0 (ShearY, 0.56, 0.28) (Sharpness, 0.49, 0.22)
sub-policy 1 (Rotate, 0.36, 0.19) (Contrast, 0.56, 0.31)
sub-policy 2 (TranslateY, 0.00, 0.41) (Brightness, 0.47, 0.52)
sub-policy 3 (AutoContrast, 0.80, 0.44) (Color, 0.44, 0.37)
sub-policy 4 (Color, 0.94, 0.25) (Brightness, 0.68, 0.45)
sub-policy 5 (TranslateY, 0.63, 0.40) (Equalize, 0.82, 0.30)
sub-policy 6 (Equalize, 0.46, 0.71) (Posterize, 0.50, 0.72)
sub-policy 7 (Color, 0.52, 0.48) (Sharpness, 0.19, 0.40)
sub-policy 8 (Sharpness, 0.42, 0.38) (Cutout, 0.55, 0.24)
sub-policy 9 (ShearX, 0.74, 0.56) (TranslateX, 0.48, 0.67)
sub-policy 10 (Invert, 0.36, 0.59) (Brightness, 0.50, 0.23)
sub-policy 11 (TranslateX, 0.36, 0.36) (Posterize, 0.80, 0.32)
sub-policy 12 (TranslateX, 0.48, 0.36) (Cutout, 0.64, 0.67)
sub-policy 13 (Posterize, 0.31, 0.04) (Contrast, 1.00, 0.08)
sub-policy 14 (Contrast, 0.42, 0.26) (Cutout, 0.00, 0.44)
sub-policy 15 (Equalize, 0.16, 0.69) (Brightness, 0.73, 0.18)
sub-policy 16 (Contrast, 0.45, 0.34) (Sharpness, 0.59, 0.28)
sub-policy 17 (TranslateX, 0.13, 0.54) (Invert, 0.33, 0.48)
sub-policy 18 (Rotate, 0.50, 0.58) (Posterize, 1.00, 0.74)
sub-policy 19 (TranslateX, 0.51, 0.43) (Rotate, 0.46, 0.48)
sub-policy 20 (ShearX, 0.58, 0.46) (TranslateY, 0.33, 0.31)
sub-policy 21 (Rotate, 1.00, 0.00) (Equalize, 0.51, 0.37)
sub-policy 22 (AutoContrast, 0.26, 0.57) (Cutout, 0.34, 0.35)
sub-policy 23 (ShearX, 0.56, 0.55) (Color, 0.50, 0.50)
sub-policy 24 (ShearY, 0.46, 0.09) (Posterize, 0.55, 0.34)

SVHN

Sub-policy Opeartion 1 Opeartion 2
sub-policy 0 (Solarize, 0.61, 0.53) (Brightness, 0.64, 0.50)
sub-policy 1 (ShearY, 0.56, 0.54) (Sharpness, 0.67, 0.50)
sub-policy 2 (AutoContrast, 0.64, 0.50) (Posterize, 0.49, 0.42)
sub-policy 3 (Invert, 0.43, 0.62) (Equalize, 0.30, 0.53)
sub-policy 4 (Contrast, 0.49, 0.55) (Color, 0.51, 0.58)
sub-policy 5 (ShearX, 0.58, 0.50) (Brightness, 0.56, 0.54)
sub-policy 6 (Rotate, 0.43, 0.50) (Contrast, 0.47, 0.42)
sub-policy 7 (Brightness, 0.51, 0.57) (Cutout, 0.48, 0.50)
sub-policy 8 (TranslateY, 0.65, 0.46) (Rotate, 0.43, 0.46)
sub-policy 9 (ShearY, 0.41, 0.43) (Contrast, 0.48, 0.49)
sub-policy 10 (ShearY, 0.52, 0.37) (Brightness, 0.43, 0.37)
sub-policy 11 (ShearY, 0.26, 0.49) (Posterize, 0.52, 0.56)
sub-policy 12 (TranslateX, 0.67, 0.38) (TranslateY, 0.45, 0.42)
sub-policy 13 (Posterize, 0.64, 0.43) (Sharpness, 0.63, 0.54)
sub-policy 14 (Rotate, 0.47, 0.50) (Sharpness, 0.40, 0.45)
sub-policy 15 (ShearX, 0.47, 0.46) (Cutout, 0.58, 0.50)
sub-policy 16 (Rotate, 0.58, 0.53) (Solarize, 0.41, 0.43)
sub-policy 17 (Color, 0.37, 0.44) (Brightness, 0.52, 0.41)
sub-policy 18 (TranslateX, 0.49, 0.47) (Posterize, 0.49, 0.52)
sub-policy 19 (TranslateY, 0.50, 0.49) (Solarize, 0.50, 0.42)
sub-policy 20 (TranslateY, 0.27, 0.50) (Invert, 0.56, 0.29)
sub-policy 21 (ShearY, 0.64, 0.57) (Rotate, 0.49, 0.57)
sub-policy 22 (Invert, 0.49, 0.55) (Contrast, 0.41, 0.50)
sub-policy 23 (ShearX, 0.57, 0.49) (Color, 0.60, 0.50)
sub-policy 24 (Rotate, 0.54, 0.53) (Equalize, 0.52, 0.50)

ImageNet

Sub-policy Opeartion 1 Opeartion 2
sub-policy 0 (TranslateY, 0.85, 0.64) (Contrast, 0.70, 0.47)
sub-policy 1 (ShearX, 0.69, 0.64) (Brightness, 0.58, 0.46)
sub-policy 2 (Solarize, 0.33, 0.53) (Contrast, 0.36, 0.40)
sub-policy 3 (ShearY, 0.54, 0.81) (Color, 0.65, 0.67)
sub-policy 4 (Rotate, 0.52, 0.28) (Invert, 0.55, 0.46)
sub-policy 5 (ShearY, 0.76, 0.55) (AutoContrast, 0.64, 0.46)
sub-policy 6 (TranslateX, 0.32, 0.67) (Sharpness, 0.45, 0.61)
sub-policy 7 (Brightness, 0.28, 0.54) (Cutout, 0.29, 0.53)
sub-policy 8 (TranslateY, 0.26, 0.39) (Brightness, 0.30, 0.57)
sub-policy 9 (ShearX, 0.46, 0.62) (Rotate, 0.51, 0.59)
sub-policy 10 (TranslateY, 0.63, 0.38) (Invert, 0.40, 0.33)
sub-policy 11 (TranslateY, 0.49, 0.32) (Equalize, 0.43, 0.26)
sub-policy 12 (TranslateX, 0.31, 0.46) (AutoContrast, 0.40, 0.00)
sub-policy 13 (ShearY, 0.57, 0.35) (Equalize, 0.45, 0.16)
sub-policy 14 (Solarize, 0.78, 0.61) (Brightness, 0.57, 0.80)
sub-policy 15 (Color, 0.75, 0.40) (Cutout, 0.54, 0.47)
sub-policy 16 (ShearX, 0.51, 0.67) (Cutout, 0.37, 0.45)
sub-policy 17 (TranslateX, 0.68, 0.39) (Rotate, 0.47, 0.16)
sub-policy 18 (Rotate, 0.64, 0.55) (Sharpness, 0.66, 0.80)
sub-policy 19 (TranslateY, 0.47, 0.75) (Sharpness, 0.64, 0.52)
sub-policy 20 (AutoContrast, 0.29, 0.54) (Posterize, 0.35, 0.70)
sub-policy 21 (Invert, 0.55, 0.49) (Equalize, 0.44, 0.76)
sub-policy 22 (TranslateX, 0.86, 0.29) (Contrast, 0.41, 0.60)
sub-policy 23 (Invert, 0.28, 0.45) (Posterize, 0.42, 0.34)
sub-policy 24 (Posterize, 0.15, 0.33) (Color, 0.50, 0.59)

More Repositories

1

M2Det

M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network
Python
1,453
star
2

CBNet_caffe

Composite Backbone Network (AAAI20)
Python
411
star
3

CBNetV2

[TIP 2022] CBNetV2: A Composite Backbone Network Architecture for Object Detection
Python
369
star
4

GALA3D

[ICML 2024] GALA3D: Towards Text-to-3D Complex Scene Generation via Layout-guided Generative Gaussian Splatting
HTML
245
star
5

DrivingGaussian

[CVPR 2024] DrivingGaussian: Composite Gaussian Splatting for Surrounding Dynamic Autonomous Driving Scenes
206
star
6

CFENet

Comprehensive Feature Enhancement Module for Single-Shot Object Detector
198
star
7

DynamicDet

[CVPR 2023] DynamicDet: A Unified Dynamic Architecture for Object Detection
Python
109
star
8

T-SEA

[CVPR 2023] T-SEA: Transfer-based Self-Ensemble Attack on Object Detection
Python
88
star
9

CBNet_pytorch

CBNet implementation based on mmdetection (AAAI 2020)
Python
84
star
10

CMUA-Watermark

[AAAI 2022] CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes
Python
81
star
11

RCBEVDet

[CVPR 2024] RCBEVDet: Radar-camera Fusion in Bird’s Eye View for 3D Object Detection
65
star
12

OPANAS

[CVPR 2021]OPANAS: One-Shot Path Aggregation Network Architecture Search for Object Detection
Python
44
star
13

RPAttack

(ICME2021) RPATTACK: REFINED PATCH ATTACK ON GENERAL OBJECT DETECTORS
Jupyter Notebook
42
star
14

HENet

[ECCV 2024] HENet: Hybrid Encoding for End-to-end Multi-task 3D Perception from Multi-view Cameras
42
star
15

BEV-MAE

[AAAI 2024] BEV-MAE: Bird's Eye View Masked Autoencoders for Point Cloud Pre-training in Autonomous Driving Scenarios
Python
38
star
16

QGCN

Learning a Single Model With a Wide Range of Quality Factors for JPEG Image Artifacts Removal (TIP 2020)
Python
36
star
17

STR_TPSearch

Python
22
star
18

FlowNAS

[IJCV 2023] FlowNAS: Neural Architecture Search for Optical Flow Estimation
Python
15
star
19

IterNet

Jupyter Notebook
14
star
20

GSTO

official implementation of paper: GSTO: Gated Scale-Transfer Operation for Multi-Scale Feature Learning in Pixel Labeling
Python
6
star
21

SAMPLING

[ICCV 2023] SAMPLING: Scene-adaptive Hierarchical Multiplane Images Representation for Novel View Synthesis from a Single Image
Python
4
star
22

ContinualContrastiveLearning

[ICME 2022] Continual Contrastive Learning for Image Classification
Python
4
star
23

MixTConv

Python
4
star
24

SReN_MM

Python
3
star
25

FORMULA

[WACV 2023] Foreground Guidance and Multi-Layer Feature Fusion for Unsupervised Object Discovery with Transformers
Python
2
star
26

A-quadrilateral-scene-text-detector

Python
2
star
27

BEVFusion

Python
1
star
28

VDIGPKU.github.io

CSS
1
star