• Stars
    star
    119
  • Rank 297,930 (Top 6 %)
  • Language
    R
  • Created over 6 years ago
  • Updated over 2 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

modelDown generates a website with HTML summaries for predictive models

modelDown

CRAN_Status_Badge DOI R build status Codecov test coverage

modelDown generates a website with HTML summaries for predictive models. Is uses DALEX explainers to compute and plot summaries of how given models behave. We can see how well models behave (Model Performance, Auditor), how much each variable contributes to predictions (Variable Response) and which variables are the most important for a given model (Variable Importance). We can also compare Concept Drift for pairs of models (Drifter). Additionally, data available on the website can be easily recreated in current R session (using the archivist package).

pkgdown documentation: https://ModelOriented.github.io/modelDown/

An example website for regression models: https://mi2datalab.github.io/modelDown_example/

Getting started

Do you want to start right now ? Check out our getting started guide.

Or just simply install it like below:

Stable version: devtools::install_github("ModelOriented/modelDown")

And if you want to get the latest changes:

Development version: devtools::install_github("ModelOriented/modelDown@dev")

Contributing

If you spot a bug or you have a feature proposal feel free to create an issue in this repository. We are also open to contributions in a form of pull requests. Just follow steps below:

  1. Open a new issue (specify an issue type as a label - a bug or an enhancement).

Additionally you can:

  1. Start a new branch from the dev branch. It should be named bugfix/XX-short-description or feature/XX-short-description where XX is an issue number.
  2. Create commits with descriptive messages starting with #XX.
  3. Create a pull request of the created branch to the dev branch.
  4. Wait for a review from one of the modelDown maintainers.

Help us build better software!

Index page

Index page presents basic information about data provided in explainers. You can also see types of all explainers given as parameters. Additionally, summary statistics are available for numerical variables. For categorical variables, tables with frequencies of factor levels are presented.

Auditor

Module shows plots generated by auditor package.

Drifter

Results of drifter package are displayed in this tab. In order to see the comparison charts, you have to provide pair of explainers as parameters (for example: list(explainer_glm_old, explainer_glm_new)).

Model Performance

Module shows result of function model_performance.

Variable Importance

Output of function variable_importance is presented in form of a plot as well as a table.

Variable Response

For each variable, plot is created by using function variable_response. Plots can be easily navigated using links on the left side. One can provide names of variables to include in the module with argument vr.vars (if argument is not used, plots for all variables of first explainer are generated).

Loading data in R

In each tab you can find links with R commands. If you execute them, you can load relevant objects into current R session (archivist package is necessary). By default data is stored and loaded from local repository. If you wish to store data on GitHub repository, please provide argument remote_repository_path. After generating modelDown website, repository folder must be placed under this path.

Acknowledgments

Work on this package is financially supported by Warsaw University of Technology, Faculty of Mathematics and Information Science.

More Repositories

1

DALEX

moDel Agnostic Language for Exploration and eXplanation
Python
1,364
star
2

DrWhy

DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.
R
679
star
3

modelStudio

πŸ“ Interactive Studio for Explanatory Model Analysis
R
323
star
4

randomForestExplainer

A set of tools to understand what is happening inside a Random Forest
R
230
star
5

forester

Trees are all you need
HTML
112
star
6

survex

Explainable Machine Learning in Survival Analysis
R
97
star
7

fairmodels

Flexible tool for bias detection, visualization, and mitigation
R
86
star
8

iBreakDown

Break Down with interactions for local explanations (SHAP, BreakDown, iBreakDown)
R
79
star
9

treeshap

Compute SHAP values for your tree-based models using the TreeSHAP algorithm
R
78
star
10

shapviz

SHAP Plots in R
R
77
star
11

DALEXtra

Extensions for the DALEX package
R
65
star
12

auditor

Model verification, validation, and error analysis
R
58
star
13

shapper

An R wrapper of SHAP python library
R
58
star
14

ingredients

Effects and Importances of Model Ingredients
R
37
star
15

SAFE

Surrogate Assisted Feature Extraction
Python
36
star
16

kernelshap

Different SHAP algorithms
R
36
star
17

DALEX-docs

Documentation for the DALEX project
Jupyter Notebook
34
star
18

live

Local Interpretable (Model-agnostic) Visual Explanations - model visualization for regression problems and tabular data based on LIME method. Available on CRAN
R
34
star
19

ArenaR

Data generator for Arena - interactive XAI dashboard
R
30
star
20

rSAFE

Surrogate Assisted Feature Extraction in R
R
28
star
21

EIX

Structure mining for xgboost model
R
25
star
22

factorMerger

Set of tools to support results from post hoc testing
R
24
star
23

EloML

R package EloML: Elo rating system for machine learning models
R
24
star
24

EMMA

Evaluation of Methods for dealing with Missing data in Machine Learning algorithms
HTML
23
star
25

xspliner

Explain black box with GLM
R
23
star
26

hstats

Friedman's H-statistics
R
23
star
27

Arena

Interactive XAI dashboard
Vue
22
star
28

MAIR

Monitoring of AI Regulations
HTML
19
star
29

pyCeterisParibus

Python library for Ceteris Paribus Plots (What-if plots)
Python
19
star
30

drifter

Concept Drift and Concept Shift Detection for Predictive Models
R
19
star
31

xai2shiny

Create Shiny application with model exploration from explainers
R
18
star
32

localModel

LIME-like explanations with interpretable features based on Ceteris Paribus curves. Now on CRAN.
R
14
star
33

vivo

Variable importance via oscillations
R
14
star
34

corrgrapher

Visualize correlations between variables
R
13
star
35

metaMIMIC

Jupyter Notebook
12
star
36

EvidenceBasedML

Evidence-Based Machine Learning
9
star
37

weles

Python
9
star
38

triplot

Triplot: Instance- and data-level explanations for the groups of correlated features.
R
9
star
39

xai2cloud

Create web API from model explainers
R
8
star
40

xaibot

XAI chat bot for Titanic model - created with plumber
JavaScript
8
star
41

FairPAN

R
7
star
42

AI-strategies-papers-regulations-monitoring

Monitoring of AI strategies, papers, and regulations
Jupyter Notebook
7
star
43

piBreakDown

python version of iBreakDown
Python
4
star
44

RME

Recurrent Memory Explainer
Python
3
star
45

mogger

Logger for Predictive Models
Java
2
star
46

ceterisParibus2

Very experimental version of the ceterisParibus package.
Jupyter Notebook
2
star
47

DrWhyTemplate

CSS
2
star
48

shimex

R Package for Exploring Models with Shiny App
R
2
star
49

DALEX2

Explain! Package with core wrappers for DrWhy universe.
R
2
star
50

ModelDevelopmentProcess

Source codes for Model Development Process plots
HTML
1
star
51

Hex4DrWhy

Shiny app for logo prototyping
R
1
star