• Stars
    star
    199
  • Rank 196,105 (Top 4 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created almost 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

ECCV2020 - Practical Deep Raw Image Denoising on Mobile Devices

Practical Mobile Raw Image Denoising (PMRID)

Code and dataset for ECCV20 paper Practical Deep Raw Image Denoising on Mobile Devices.

Dataset

Downloads

Usage

The dataset includes two 7zip files:

  • reno10x_noise.7z contains DNG raw images shot by an OPPO Reno 10x phone for noise parameter estimation (refer Sec 3.1 and 5.1 in the paper)
  • PMRID.7z is the benchmark dataset described in Sec 5.2 in the paper

The structure of PMRID.7z is

- benchmark.json  # meta info
- Scene1/
  \- Bright/
     \- exposure-case1/ 
         \- input.raw   # RAW data for noisy image in uint16
          - gt.raw      # RAW data for clean image in uint16
      + case2/
  + Dark/
+ Secne2/

All metadata for images are listed in benchmark.json:

{
   "input": "path/to/noisy_input.raw",
   "gt": "path/to/clean_gt.raw",
   "meta": {
       "name": "case_name",
       "scene_id": "scene_name",
       "light": "light condition",
       "ISO": "ISO",
       "exp_time": "exposure time",
       "bayer_pattern": "BGGR",
       "shape": [3000, 4000],
       "wb_gain": [r_gain, g_gain, b_gain],
       "CCM": [   # 3x3 color correction matrix
           [c11, c12, c13], 
           [c21, c22, c23], 
           [c31, c32, c33]
       ],
       "ROIs": [  # patch ROIs to calculate PSNR and SSIM, x0 is topleft
           [topleft_w, topleft_h, bottomright_w, bottomright_h]
       ]
   }
}

Pre-trained Models and Benchmark Script

Both PyTorch and MegEngine pre-trained models are provided in the models directory. The benchmark script is written for models trained with MegEngine. Python >= 3.6 is required to run the benchmark script.

pip install -r requirements.txt
python3 run_benchmark.py --benchmark /path/to/PMRID/benchmark.json models/mge_pretrained.ckp

Citation

@inproceedings{wang2020,
	title={Practical Deep Raw Image Denoising on Mobile Devices},
	author={Wang, Yuzhi and Huang, Haibin and Xu, Qin and Liu, Jiaming and Liu, Yiqun and Wang, Jue},
	booktitle={European Conference on Computer Vision (ECCV)},
	year={2020},
	pages={1--16}
}

More Repositories

1

MegEngine

MegEngine 是一个快速、可拓展、易于使用且支持自动求导的深度学习框架
C++
4,758
star
2

InferLLM

a lightweight LLM model inference framework
C++
670
star
3

MegCC

MegCC是一个运行时超轻量,高效,移植简单的深度学习模型编译器
C++
473
star
4

MegSpot

MegSpot是一款高效、专业、跨平台的图片&视频对比应用
Vue
459
star
5

MegFlow

Efficient ML solution for long-tailed demands.
Rust
402
star
6

Models

采用MegEngine实现的各种主流深度学习模型
Python
303
star
7

RepLKNet

Official MegEngine implementation of RepLKNet
Python
268
star
8

MegPeak

C++
247
star
9

mperf

mperf是一个面向移动/嵌入式平台的算子性能调优工具箱
C++
169
star
10

NBNet

NBNet: Noise Basis Learning for Image Denoising with Subspace Projection
Python
148
star
11

YOLOX

MegEngine implementation of YOLOX
Python
106
star
12

Hub

基于旷视研究院领先的深度学习算法,提供满足多业务场景的预训练模型
Python
90
star
13

mgeconvert

MegEngine到其他框架的转换器
Python
67
star
14

ICD

This is the official implementation of the paper "Instance-conditional Knowledge Distillation for Object Detection", based on MegEngine and Pytorch.
Python
57
star
15

MegRay

A communication library for deep learning
C++
48
star
16

GyroFlow

The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning
Python
44
star
17

Docs

MegEngine Documentations
Python
44
star
18

Documentation

MegEngine Official Documentation
Python
39
star
19

Resource

Jupyter Notebook
32
star
20

OMNet

OMNet: Learning Overlapping Mask for Partial-to-Partial Point Cloud Registration, ICCV 2021, MegEngine implementation.
Python
32
star
21

examples

A set of examples around MegEngine
Python
29
star
22

ECCV2022-RIFE

Official MegEngine Implementation of Real-Time Intermediate Flow Estimation for Video Frame Interpolation
Python
29
star
23

FINet

This is the official MegEngine implementation of FINet: Dual Branches Feature Interaction for Partial-to-Partial Point Cloud Registration, AAAI 2022
Python
20
star
24

MegDiffusion

MegEngine implementation of Diffusion Models.
Python
16
star
25

awesome-megengine

Awesome Resources about MegEngine
15
star
26

cutlass-bak

modified cutlass
C++
14
star
27

End-to-end-ASR-Transformer

An end to end ASR Transformer model training repo
Python
13
star
28

swin-transformer

Swin-Transformer implementation in MegEngine. This is a showcase for training on GPU with less memory by leveraging MegEngine DTR technique.
Python
12
star
29

MegCat

A Deep Learning Project about cats.
11
star
30

NeRF

NeRF implementation in MegEngine
Python
9
star
31

Inference-Demo

推理样例
C++
8
star
32

megenginelite-rs

Rust
7
star
33

MegCookbook

以《解析深度学习——卷积神经网络原理与视觉实践》一书内容为脉络,提供MegEngine具体代码实现示例和项目案例
7
star
34

cheat_sheet_for_pytorch_immigrant

一份给从 PyTorch 迁移过来的用户的小抄
6
star
35

MegEngine-DMVFN

Python
6
star
36

MegEngine-SAM

Python
5
star
37

invis

invisible megengine API
Python
4
star
38

midout

Reduce binary size by removing code blocks
C++
4
star
39

MegRL

A MegEngine implementation of 6 RL algorithms
Python
3
star
40

MegEngine-Benchmark

Python
3
star
41

torch2mge

Python
2
star
42

Transfer-Learning-Library

Transfer Learning Library for Domain Adaptation, Task Adaptation, and Domain Generalization
Python
2
star
43

xopr

Experimental Operator Library for MegEngine
Python
2
star
44

mperf-libpfm4

forked from https://sourceforge.net/p/perfmon2/libpfm4/ci/master/tree/
C
1
star