• Stars
    star
    341
  • Rank 123,998 (Top 3 %)
  • Language
  • Created over 5 years ago
  • Updated about 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Free online math resources for Machine Learning

Content

Books

Dive into Deep Learning

An interactive deep learning book with code, math, and discussions, based on the NumPy interface by Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. With 900 pages, this seems to be one of the most comprehensive one-stop resources that goes from Linear Neural Networks and Multilayer Perceptrons all the way to modern Deep Learning architectures including Attention Mechanisms and Optimization Algorithms – giving you all three: Theory, Math & Code.

Math for Machine Learning

Note: We have bi-weekly remote reading sessions goingthrough all chapters of the book. If you'd like to join check out this blog post and join us on Meetup.

Part I: Mathematical Foundations

  1. Introduction and Motivation
  2. Linear Algebra
  3. Analytic Geometry
  4. Matrix Decompositions
  5. Vector Calculus
  6. Probability and Distribution
  7. Continuous Optimization

Part II: Central Machine Learning Problems

  1. When Models Meet Data
  2. Linear Regression
  3. Dimensionality Reduction with Principal Component Analysis
  4. Density Estimation with Gaussian Mixture Models
  5. Classification with Support Vector Machines

Blog posts

The Matrix Calculus You Need For Deep Learning

by Terence Parr and Jeremy Howard

Abstract

"This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way---just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here."

Interactive tools

Seeing Theory: Probability and Stats

A visual introduction to probability and statistics.

Sage Interactions

This is a collection of pages demonstrating the use of the interact command in Sage. It should be easy to just scroll through and copy/paste examples into Sage notebooks.

Examples include Algebra, Bioinformatics, Calculus, Cryptography, Differential Equations, Drawing Graphics, Dynamical Systems, Fractals, Games and Diversions, Geometry, Graph Theory, Linear Algebra, Loop Quantum Gravity, Number Theory, Statistics/Probability, Topology, Web Applications.

Probability Distributions

by Simon Ward-Jones. A visual 👀 tour of probability distributions.

  • Bernoulli Distribution
  • Binomial Distribution
  • Normal Distribution
  • Beta Distribution
  • LogNormal Distribution

Bayesian Inference

by Simon Ward-Jones. Explaining the basics of bayesian inference with the example of flipping a coin.

Videos

3blue1brown

3blue1brown, by Grant Sanderson, is some combination of math and entertainment, depending on your disposition. The goal is for explanations to be driven by animations and for difficult problems to be made simple with changes in perspective.

Recommended video series:

The classic: Gilbert Strang MIT lectures on Linear Algebra

Matrix Methods in Data Analysis, Signal Processing, and Machine Learning

  • Spring 2018
  • Level: Undergraduate / Graduate
  • Course description: "Linear algebra concepts are key for understanding and creating machine learning algorithms, especially as applied to deep learning and neural networks. This course reviews linear algebra with applications to probability and statistics and optimization–and above all a full explanation of deep learning."
  • Format: Video lectures

Online courses

Mathematics for Machine Learning – Linear Algebra

Imperial College London. "This course offers an introduction to the linear algebra required for common machine learning techniques. We start at the very beginning with thinking about vectors and what vectors are, and the basic mathematical operations we can do with vectors, like how to add vectors. We then move on to think about how to find the product of vectors and what the modulus or size of a vector is. In physical spaces that then lets us think about linear algebra geometrically, and therefore when vectors are perpendicular to eachother or have an angle between then. We can think about the basis – the fundamental vectors that make up a vector space – and how to change basis and transform between vector frames. That then lets us think about how to combine matrix transformations and how to do inverse transformations. That then takes us on to think about the eigenvectors and eigenvalues of a transformation and what these “eigen-things” mean. We then finish up the course by applying all this to a machine learning problem – the google pagerank algorithm."

Essential Math for Machine Learning: Python Edition

  • Equations, Functions, and Graphs

  • Differentiation and Optimization

  • Vectors and Matrices

  • Statistics and Probability

  • EdX

More Repositories

1

Interactive_Tools

Interactive Tools for Machine Learning, Deep Learning and Math
2,610
star
2

AI_Curriculum

Open Deep Learning and Reinforcement Learning lectures from top Universities like Stanford, MIT, UC Berkeley.
2,528
star
3

DL-workshop-series

Material used for Deep Learning related workshops for Machine Learning Tokyo (MLT)
Jupyter Notebook
936
star
4

papers-with-annotations

Research papers with annotations, illustrations and explanations
829
star
5

CNN-Architectures

HTML
503
star
6

__init__

Jupyter Notebook
136
star
7

Deep_Reinforcement_Learning

Resources, papers, tutorials
124
star
8

MLT_Talks

Slides, videos and other resources from MLT Talks
108
star
9

AI-ML-Newsletter

AI Digest: Monthly updates on AI and ML topics
105
star
10

MLT_starterkit

92
star
11

Intro-to-GANs

This code was developed for the Intro to GANs workshop for Machine Learning Tokyo (MLT).
Jupyter Notebook
66
star
12

Annotation_Tools

Open Source Annotation Tools for Computer Vision and NLP tasks
52
star
13

EdgeAIContest3

This repository present MLT Team solution for the The 3rd AI Edge Contest.
Jupyter Notebook
52
star
14

Reinforcement_Learning

Material for MLT Reinforcement Learning workshops and study sessions
Jupyter Notebook
50
star
15

Poetry-GAN

Jupyter Notebook
49
star
16

EN-JP-ML-Lexicon

This is a English-Japanese lexicon for Machine Learning and Deep Learning terminology.
33
star
17

public_datasets

Public Machine Learning Datasets
30
star
18

tfjs-workshop

JavaScript
29
star
19

ML-Math

Mathematics for Machine Learning
CSS
29
star
20

d2l.ai

25
star
21

generative_deep_learning

Generative Deep Learning Sessions led by Anugraha Sinha (Machine Learning Tokyo)
Jupyter Notebook
25
star
22

MLT-x-fastai

Fast.ai study sessions organized by MLT.
Jupyter Notebook
24
star
23

ML_Fairness_Ethics_Explainability

Fairness, Ethics, Explainability in AI and ML
Jupyter Notebook
22
star
24

intro-to-DL

Jupyter Notebook
21
star
25

kuzushiji-lite

OCR for recognizing Kuzushiji from ancient Japanese manuscripts deployed for end-users
Python
19
star
26

edgeai-lab-microcontroller-series

This repository is to share the EdgeAI Lab with Microcontrollers Series material to the entire community. We will share documents, presentations and source code of two demo applications.
C++
16
star
27

practical-ml-implementations

ML implementations for practical use
Python
15
star
28

KaggleDaysTokyo2019

Jupyter Notebook
15
star
29

Seq2Seq-Workshop

Seq2Seq workshop materials
Jupyter Notebook
15
star
30

tactile_patterns

Convert photo to tactile image to assist visually impaired
Python
15
star
31

paper_readings

Material for the Paper Reading sessions organized by Machine Learning Tokyo
TeX
15
star
32

ELSI-DL-Bootcamp

Intro to Machine Learning and Deep Learning for Earth-Life Sciences
Jupyter Notebook
14
star
33

ML_Math

This repo contains resources from our MLT math lectures.
Jupyter Notebook
14
star
34

ML_recommendation_system

Python
13
star
35

NLP

13
star
36

MLTx2020

Jupyter Notebook
12
star
37

Edge-AI-Tutorials

Collection of Edge AI tutorials
12
star
38

Agritech

Jupyter Notebook
11
star
39

AI-SUM

"Data, Task and Algorithm Complexity in Deep Learning Projects", Dimitris Katsios and Suzana Ilic at Nikkei's AI/SUM, Tokyo, Japan
Jupyter Notebook
10
star
40

Kaggle

MLT working sessions: Kaggle
Jupyter Notebook
7
star
41

Edge_AI

Resources for our Workshops on Edge AI
7
star
42

search-api-requester

API requester for recommendation system
4
star
43

ML_Search

ML Search – Feedback
2
star