• Stars
    star
    165
  • Rank 228,906 (Top 5 %)
  • Language
  • License
    MIT License
  • Created almost 7 years ago
  • Updated almost 4 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Global Data Ethics Pledge (GDEP) Awesome Humane Tech


Working Groups for v2.0 of the Pledge are being formed right now and you can read more about them and join on the Working Groups page.

The 5 Principles:

  • I COMMIT TO FAIRNESS
  • I COMMIT TO OPENNESS
  • I COMMIT TO RELIABILITY
  • I COMMIT TO TRUST
  • I COMMIT TO SOCIAL BENEFIT

Click here to join the movement today. Become a data defender for life.

Fairness:
I will make make a dedicated effort to understand, mitigate and communicate the presence of bias in both data practice and consumption.

Openness:
I will practice humility and openness. Transparent practices, community engagement, and responsible communications are an integral part of my data ethics practice.

Reliability:
I will ensure that every effort is made to glean a complete understanding of what is contained within data, where it came from, and how it was created. I will also extend this effort for future users of all data and derivative data.

Trust:
I wish to build public confidence in data practitioners. I will make every effort to use data and algorithms in ways that maximize the informed participation of people around the world.

Social Benefit:
I set people before data and intend to be responsible for maximizing social benefit and minimizing harm. I will consider the impact of my work on communities of people, other living beings, ecosystems and the world-at-large.

Commit to the Pledge and help us build a movement that collectively works towards a more accountable, equitable, open, inclusive, and transparent data community. The more of us who commit to The Pledge and adopt these principles, the more leverage we have to create change in the collective work we produce and how we produce it. We can affect hearts and minds and drive policy to a better place for all.

Data for Democracy’s Global Data Ethics Pledge is a global initiative aimed at creating the industry’s most widely adopted framework and community for ethics in data science.

Data for Democracy partnered with Bloomberg and BrightHive to develop a **code of ethics for data scientists, software developers and data analyzers of all types, (that means you 😄 ) **. This code aims to define values and priorities for overall ethical behavior, in order to guide anyone handling data to be a thoughtful, responsible agent of positive change. The code of ethics is being developed through a community-driven approach.

By hosting discussions among our data-focused community, we hope to better capture the diverse interests, needs, and concerns that are at play in the community, and put together a code that is truly created by the data community, for the data community.

Read more here.

SIGN UP HERE

Ethics Principles


  • Bias will exist. It's my responsibility to understand, mitigate and communicate the presence of bias in algorithms.
  • It's my responsibility to increase social benefit while minimizing harm.
  • I will practice humility and openness.
  • I will know my data and help future users know it as well.
  • I will make reasonable efforts to know and document its origins and document its transformation.
  • I will document transparently, accessibly, responsibly, reproducibly, and communicate.
  • I will strive to engage "the whole community" using, or impacted by, my work. I will try to clarify or redefine the definition of this community, on an ongoing basis. I will use skepticism and an open mind to expand this definition.
  • I will put people before data.
  • I will not over/under represent findings.
  • Data scientists should use a _question-driven approach_ rather than a _data-driven_ or _methods_ approach. Data scientists should consider personal safety and treat others the way they want to be treated.
  • Open by default - use of data should be transparent and fair.
  • I am part of an ecosystem and it is my ethical obligation to produce considerate analysis conducive to standards of minimal impact and risk to communities, people, and the world
  • I will respect others' data even more than my own. I will seek to understand the sources of the data and the consequences of my actions.
  • I will protect individual and institutional privacy.
  • Diversity for inclusivity.
  • Attention to bias.
  • Respect for others/persons.
  • I will respect human dignity.
  • I will agitate my organizations and colleagues to act ethically and respect human dignity.

What has been done so far?


We conducted a preliminary scan in the Data for Democracy community, by posting discussion questions on Slack and Twitter, and collecting feedback and input from our 2,000-plus members. We then identified recurring themes that our community members highlighted as important, and arranged these in a systematic framework. This was made by a list of resources addressing the topic.

After that, seven groups of work, formed by volunteers are doing an in-depth discussion of each topic area. Each group is meeting once every 2 weeks, for 1 to 2 hours each time to convey these analysis. Finally, a selected group of advisors will review the notes and gives feedback.

The aim was to have a draft version by February 6th to be presented at the Data for Good Exchange celebrated in San Francisco (D4GX)

The topic areas that the volunteers are discussing are:

  • Data Ownership and Provenance
  • Bias and Mitigation
  • Responsible Communications
  • Privacy and Security
  • Transparency and Openness
  • Questions and Answers
  • Thought Diversity

How can you contribute with ideas?


In order for this process to be as transparent and open as possible, we are making use of GitHub to collect ideas and suggestions from the community as a whole. This provides a quick and easy way for you to do the following-

  1. Submit titles or links of literature/resources that you have found useful in thinking about ethics and data science. You can do so by forking the repo and making the change in your text editor and submitting a pull request or directly in the resources.md file.
If you are not familiar with GitHub. (.md stands for Markdown, a way to format writing on the web easily-cheatsheet link below). If you click on the link, it’ll take you to a page that only loads the resources.md file. On the right side, above the beginning of the document, there is a button with a pencil icon. This allows you edit the file and add your links without having to fork the repo to your computer, use the command line, or any other thing but the content management system built into GitHub.
  1. Submit links including comments on what matters to you when creating a data science code of ethics. Open a pull request from your forked repo.
If you click the “Commit changes” button when using GitHub's content management system, you’ll get a notification from Github saying that you can’t directly contribute to the code so it has forked the repository for you and has made your changes on your branch. That might sound a bit confusing, it only means that we aren’t allowed to directly change the existing/live code or document without going through the process that verifies any proposed changes. In order for this to happen, everything is copied to your GitHub account and you make the changes on your GitHub account. If you want the changes to appear in the main project page/repo, you need to submit a pull request by following steps provided.
  1. Browse all the suggestions, comments and links submitted by your fellow community members in the Discussions section. All results of these contributions can be viewed by the public, here and in the master version of the resources.md file, including you.

  2. Indicate which suggestions and comments you agree with through voting via 👍 or 👎 emojis in the Discussions section located here.

The setup of GitHub presents you with all suggestions. However, please keep in mind that none of these suggestions are mutually exclusive; we are not pitting ideas against each other or using the number of votes to eliminate suggestions. We are simply using this as one convenient metric to determine which ideas have the most resonance in the community, or which resources/literature have been useful to a large number of people. If all suggestions presented are important to you, feel free to :thumbsup: all of them. If you have a more detailed response or would like to express your thoughts on someone else's idea, you can submit this comment in the Ethics Team's Discussion area or comment directly on their open pull request.

This document is written and edited using GitHub flavored Markdown. It's not scary, it's very simple and they even provide a cheatsheet which you can find here.

Shout out to Ashley Blewer's blog post for breaking down the pull request so succinctly.

More Repositories

1

read-this-first

Start here!
424
star
2

election-transparency

A Data4Democracy community working to make elections and elections data more transparent
HTML
88
star
3

tutorials

A place for tutorials relevant to D4D projects.
Jupyter Notebook
85
star
4

drug-spending

Project to understand pharmaceutical spending, currently focused on US government programs.
HTML
71
star
5

usa-dashboard

A dashboard of key metrics for the USA
Python
69
star
6

github-playground

A safe place to experiment with git & GitHub in a group setting
Jupyter Notebook
44
star
7

internal-displacement

Studying news events and internal displacement.
Jupyter Notebook
43
star
8

immigration-connect

Building tools to connect and coordinate efforts to help those affected by immigration law changes in partnership with the NILC
Python
41
star
9

assemble

NOT AN ACTIVE PROJECT -- Check readme for data sources
Jupyter Notebook
36
star
10

far-right-analysis

Analysis related to the behavior of extreme far right online communities
Python
35
star
11

hate_speech_detector

Jupyter Notebook
32
star
12

media-crawler

Web scraper for generating a graph of media connections via articles, twitter, reddit, and more
Python
32
star
13

collect-social

Simply collect social media content
Python
28
star
14

zip-code-to-county

The code that generates the zipcode to look up csv's based on government data. Dataset can be found here https://data.world/niccolley/us-zipcode-to-county-state
Jupyter Notebook
26
star
15

indivisible

Aggregating call to action sites into a single application.
Python
25
star
16

project-ideas

A place for project ideas to live, be discussed, and be brought to life!
25
star
17

discursive

Twitter topic search and indexing with Elasticsearch
Python
21
star
18

house_expenditures

HTML
18
star
19

are-you-fake-news

16
star
20

datafordemocracy.org

Our public-facing website!
HTML
15
star
21

docker-scaffolding

Template for Docker-based projects
Python
14
star
22

campaign_expenditures

Jupyter Notebook
12
star
23

just-politics

Identifying vulnerable house and senate seats in the 2018 midterm elections
12
star
24

colorado

Highlighting code & projects from #city-denver and #city-boulder.
Jupyter Notebook
12
star
25

india-nfhs

analyze India's National Family Health Survey r.e. women's empowerment, wealth
HTML
11
star
26

smtk

NOT ACTIVE -- get in touch with @bstarling on slack if you have ideas
Python
9
star
27

womens-march

This is a place to join and analyze data related to the Women's Marches. Potentially this can lead to further joining and analysis of data on resistance to Trump and support for rights or issues that Trump opposes, as the Scientists' March on Washington (and possibly others) are discussed about and planned.
R
8
star
28

quorum

Python
7
star
29

ati-broadcastapp

The ATI Broadcast app group is building a Facebook publishing app for the group America the Indivisible. Via this app an AITD trusted partner will be able to broadcast a message to multiply Facebook groups from one interface. This will allow the local groups in a region, of which there are many, to better communicate and mobilize toward specific actions.
JavaScript
7
star
30

disinfo-campaigns

Research on disinformation operations, influence campaigns.
R
6
star
31

reddit-api-miner

code to use the reddit api to get data from subreddit|(s)
Python
6
star
32

wh-financial-disclosures

Data collection and analysis around the financial disclosures from the Office of Government Ethics
Jupyter Notebook
6
star
33

democratizing_weather_data

Jupyter Notebook
6
star
34

incarceration-trends

Analysis of incarceration data to inform bail reform legislation in Colorado. Data for Democracy x ACLU of Colorado.
HTML
6
star
35

nyc-accessibility

HTML
6
star
36

propublica-org

Organizing info on ongoing ProPublica projects and team maintenance
5
star
37

micro-projects

Jupyter Notebook
5
star
38

town-council

Tools to scrape and centralize the text of meeting agendas & minutes from local city governments. NOT ACTIVE -- looking for new lead(s)!
Python
5
star
39

louisville-hackathon-mar2017

Repo storing all of the goodies from the March 2017 Louisville Hackathon
Java
4
star
40

official-foreign-travel

Python
4
star
41

city-sandiego

Working on awesome projects for the City of San Diego
HTML
4
star
42

predicting_poverty

We are going to try to use satellite imagery and publicly available wealth data to predict poverty using deep learning.
4
star
43

VA-open-data

HTML
3
star
44

political-ads

Python
3
star
45

immigration-germany

Exploring German immigration data
3
star
46

data-dot-gov-archive

3
star
47

Verum

Project dedicated to showing voters how their candidate represents them through the analysis of legislature data.
Python
3
star
48

metadata-for-democracy

Python
3
star
49

equifake

Credit monitoring but for propaganda
HTML
2
star
50

ethics-research

Repository for the Ethics Research GDEP working group
2
star
51

across-the-news

Build a tool that helps readers quickly see all perspectives of a story
2
star
52

residential-education-segregation

Exploring segregation in residential education
2
star
53

educational-hub

Resources and tools to connect educators and students interested in exploring capstone/community service projects with D4D
CSS
2
star
54

ethical-assessment

As of January, every new project at D4D goes through an ethical assessment in order to have a repo. Because the Global Data Ethics Project is a flagship partner project for D4D, we are incorporating ethical frameworks into our data work!
2
star
55

lobbyist-blacklist

Investigations to compile a database of Americans' IDs that were appropriated for industry-aligned comments
1
star
56

datafordemocracy.org-v2

JavaScript
1
star
57

untitled-beta

1
star
58

d4d-ambassador

Repository for the D4D Ambassador GDEP working group
1
star
59

police_cheat

Jupyter Notebook
1
star
60

d4dverse

Building R tools for D4D projects
1
star
61

tx-secession

Exploration of Texas secession conversation on Twitter
Jupyter Notebook
1
star
62

uk-elections

Identifying insights and patterns from analysis of UK election data.
1
star
63

announcements

Any announcements made in the #announcements channel in the D4D slack, for transparency.
1
star
64

fact-check

A home for all things fact-checking-related in D4D.
1
star
65

whitehousedotgov

Code that supports d4d's harvesting, munging, and analyzing data from current and past administrations’ public websites
R
1
star