Keras Transformer
Implementation of transformer for seq2seq tasks.
Install
pip install keras-transformer
Usage
Train
import numpy as np
from keras_transformer import get_model
# Build a small toy token dictionary
tokens = 'all work and no play makes jack a dull boy'.split(' ')
token_dict = {
'<PAD>': 0,
'<START>': 1,
'<END>': 2,
}
for token in tokens:
if token not in token_dict:
token_dict[token] = len(token_dict)
# Generate toy data
encoder_inputs_no_padding = []
encoder_inputs, decoder_inputs, decoder_outputs = [], [], []
for i in range(1, len(tokens) - 1):
encode_tokens, decode_tokens = tokens[:i], tokens[i:]
encode_tokens = ['<START>'] + encode_tokens + ['<END>'] + ['<PAD>'] * (len(tokens) - len(encode_tokens))
output_tokens = decode_tokens + ['<END>', '<PAD>'] + ['<PAD>'] * (len(tokens) - len(decode_tokens))
decode_tokens = ['<START>'] + decode_tokens + ['<END>'] + ['<PAD>'] * (len(tokens) - len(decode_tokens))
encode_tokens = list(map(lambda x: token_dict[x], encode_tokens))
decode_tokens = list(map(lambda x: token_dict[x], decode_tokens))
output_tokens = list(map(lambda x: [token_dict[x]], output_tokens))
encoder_inputs_no_padding.append(encode_tokens[:i + 2])
encoder_inputs.append(encode_tokens)
decoder_inputs.append(decode_tokens)
decoder_outputs.append(output_tokens)
# Build the model
model = get_model(
token_num=len(token_dict),
embed_dim=30,
encoder_num=3,
decoder_num=2,
head_num=3,
hidden_dim=120,
attention_activation='relu',
feed_forward_activation='relu',
dropout_rate=0.05,
embed_weights=np.random.random((13, 30)),
)
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
)
model.summary()
# Train the model
model.fit(
x=[np.asarray(encoder_inputs * 1000), np.asarray(decoder_inputs * 1000)],
y=np.asarray(decoder_outputs * 1000),
epochs=5,
)
Predict
from keras_transformer import decode
decoded = decode(
model,
encoder_inputs_no_padding,
start_token=token_dict['<START>'],
end_token=token_dict['<END>'],
pad_token=token_dict['<PAD>'],
max_len=100,
)
token_dict_rev = {v: k for k, v in token_dict.items()}
for i in range(len(decoded)):
print(' '.join(map(lambda x: token_dict_rev[x], decoded[i][1:-1])))
Translation
import numpy as np
from keras_transformer import get_model, decode
source_tokens = [
'i need more power'.split(' '),
'eat jujube and pill'.split(' '),
]
target_tokens = [
list('我要更多的抛瓦'),
list('吃枣💊'),
]
# Generate dictionaries
def build_token_dict(token_list):
token_dict = {
'<PAD>': 0,
'<START>': 1,
'<END>': 2,
}
for tokens in token_list:
for token in tokens:
if token not in token_dict:
token_dict[token] = len(token_dict)
return token_dict
source_token_dict = build_token_dict(source_tokens)
target_token_dict = build_token_dict(target_tokens)
target_token_dict_inv = {v: k for k, v in target_token_dict.items()}
# Add special tokens
encode_tokens = [['<START>'] + tokens + ['<END>'] for tokens in source_tokens]
decode_tokens = [['<START>'] + tokens + ['<END>'] for tokens in target_tokens]
output_tokens = [tokens + ['<END>', '<PAD>'] for tokens in target_tokens]
# Padding
source_max_len = max(map(len, encode_tokens))
target_max_len = max(map(len, decode_tokens))
encode_tokens = [tokens + ['<PAD>'] * (source_max_len - len(tokens)) for tokens in encode_tokens]
decode_tokens = [tokens + ['<PAD>'] * (target_max_len - len(tokens)) for tokens in decode_tokens]
output_tokens = [tokens + ['<PAD>'] * (target_max_len - len(tokens)) for tokens in output_tokens]
encode_input = [list(map(lambda x: source_token_dict[x], tokens)) for tokens in encode_tokens]
decode_input = [list(map(lambda x: target_token_dict[x], tokens)) for tokens in decode_tokens]
decode_output = [list(map(lambda x: [target_token_dict[x]], tokens)) for tokens in output_tokens]
# Build & fit model
model = get_model(
token_num=max(len(source_token_dict), len(target_token_dict)),
embed_dim=32,
encoder_num=2,
decoder_num=2,
head_num=4,
hidden_dim=128,
dropout_rate=0.05,
use_same_embed=False, # Use different embeddings for different languages
)
model.compile('adam', 'sparse_categorical_crossentropy')
model.summary()
model.fit(
x=[np.array(encode_input * 1024), np.array(decode_input * 1024)],
y=np.array(decode_output * 1024),
epochs=10,
batch_size=32,
)
# Predict
decoded = decode(
model,
encode_input,
start_token=target_token_dict['<START>'],
end_token=target_token_dict['<END>'],
pad_token=target_token_dict['<PAD>'],
)
print(''.join(map(lambda x: target_token_dict_inv[x], decoded[0][1:-1])))
print(''.join(map(lambda x: target_token_dict_inv[x], decoded[1][1:-1])))
Decode
In decode
, the word with top probability is selected as the predicted token by default. You can add randomness by setting top_k
and temperature
:
decoded = decode(
model,
encode_input,
start_token=target_token_dict['<START>'],
end_token=target_token_dict['<END>'],
pad_token=target_token_dict['<PAD>'],
top_k=10,
temperature=1.0,
)
print(''.join(map(lambda x: target_token_dict_inv[x], decoded[0][1:-1])))
print(''.join(map(lambda x: target_token_dict_inv[x], decoded[1][1:-1])))