• Stars
    star
    273
  • Rank 150,754 (Top 3 %)
  • Language
    Python
  • License
    MIT License
  • Created over 4 years ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Indic-BERT-v1: BERT-based Multilingual Model for 11 Indic Languages and Indian-English. For latest Indic-BERT v2, check: https://github.com/AI4Bharat/IndicBERT

As of May 2023, we recommend using IndicBERT Repository:

IndicBERT is the new and improved implementation of BERT supporting fine-tuning with HuggingFace. All the download links for IndicCorpv2, IndicXTREME and various IndicBERTv2 models are available here.

IndicBERT

Website | Downloads | Paper

Doc    

Indic bert is a multilingual ALBERT model that exclusively covers 12 major Indian languages. It is pre-trained on our novel corpus of around 9 billion tokens and evaluated on a set of diverse tasks. Indic-bert has around 10x fewer parameters than other popular publicly available multilingual models while it also achieves a performance on-par or better than these models.

We also introduce IndicGLUE - a set of standard evaluation tasks that can be used to measure the NLU performance of monolingual and multilingual models on Indian languages. Along with IndicGLUE, we also compile a list of additional evaluation tasks. This repository contains code for running all these evaluation tasks on indic-bert and other bert-like models.

Table of Contents

Introduction

The Indic BERT model is based on the ALBERT model, a recent derivative of BERT. It is pre-trained on 12 Indian languages: Assamese, Bengali, English, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu.

The easiest way to use Indic BERT is through the Huggingface transformers library. It can be simply loaded like this:

# pip3 install transformers
# pip3 install sentencepiece

from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('ai4bharat/indic-bert')
model = AutoModel.from_pretrained('ai4bharat/indic-bert')

Note: To preserve accents (vowel matras / diacritics) while tokenization (Read this issue for more details #26 ), use this:

tokenizer = transformers.AutoTokenizer.from_pretrained('ai4bharat/indic-bert', keep_accents=True)

Setting up the Code

The code can be run on GPU, TPU or on Google's Colab platform. If you want to run it on Colab, you can simply use our fine-tuning notebook Open In Colab. For running it in your own VM, start with running the following commands:

git clone https://github.com/AI4Bharat/indic-bert
cd indic-bert
sudo pip3 install -r requirements.txt

By default, the installation will use GPU. For TPU support, first update your .bashrc with the following variables:

export PYTHONPATH="${PYTHONPATH}:/usr/share/tpu/models:<path to this repo"
export PYTHONIOENCODING=utf-8
export TPU_IP_ADDRESS="<TPU Internal Address"
export TPU_NAME="grpc://$TPU_IP_ADDRESS:8470"
export XRT_TPU_CONFIG="tpu_worker;0;$TPU_IP_ADDRESS:8470"
export LD_LIBRARY_PATH="/usr/local/lib"

Then, install pytorch-xla:

curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py
sudo python3 pytorch-xla-env-setup.py --version nightly --apt-packages libomp5 libopenblas-dev

Running Experiments

To get help, simply run:

python3 -m fine_tune.cli --help

To evaluate a specific model with default hyper-parameters, execute:

python3 -m fine_tune.cli --model <model name> --dataset <dataset name> --lang <iso lang code> --iglue_dir <base path to indic glue dir> --output_dir <output dir>

For more advanced usage of the fine-tuning code, refer this document.

Pretraining Corpus

We pre-trained indic-bert on AI4Bharat's monolingual corpus. The corpus has the following distribution of languages:

Language as bn en gu hi kn
No. of Tokens 36.9M 815M 1.34B 724M 1.84B 712M
Language ml mr or pa ta te all
No. of Tokens 767M 560M 104M 814M 549M 671M 8.9B

IndicGLUE

IGLUE is a natural language understanding benchmark for Indian languages that we propose. While building this benchmark, our objective was also to cover most of the 11 Indian languages for each task. It consists of the following tasks:

News Category Classification

Predict the genre of a given news article. The dataset contains around 125k news articles across 9 Indian languages. Example:

Article Snippet:

கர்நாடக சட்டப் பேரவையில் வெற்றி பெற்ற எம்எல்ஏக்கள் இன்று பதவியேற்றுக் கொண்ட நிலையில் , காங்கிரஸ் எம்எல்ஏ ஆனந்த் சிங் க்கள் ஆப்சென்ட் ஆகி அதிர்ச்சியை ஏற்படுத்தியுள்ளார் . உச்சநீதிமன்ற உத்தரவுப்படி இன்று மாலை முதலமைச்சர் எடியூரப்பா இன்று நம்பிக்கை வாக்கெடுப்பு நடத்தி பெரும்பான்மையை நிரூபிக்க உச்சநீதிமன்றம் உத்தரவிட்டது . 

Category: Politics

Named Entity Recognition

Recognize entities and their coarse types in a sequence of words. The dataset contains around 787k examples across 11 Indian languages.

Example:

Token चाणक्य पुरी को यहाँ देखने हेतु यहाँ क्लिक करें
Type B-LOC I-LOC O O O O O O O
Headline Prediction

Predict the correct headline for a news article from a given list of four candidate headlines. The dataset contains around 880k examples across 11 Indian languages. Example:

News Article:

 ರಾಷ್ಟ್ರೀಯ\nಪುಣೆ: 23 ವರ್ಷದ ಇನ್ಫೋಸಿಸ್ ಮಹಿಳಾ ಟೆಕ್ಕಿಯೊಬ್ಬರನ್ನು ನಡು ರಸ್ತೆಯಲ್ಲಿಯೇ ಮಾರಾಕಾಸ್ತ್ರಗಳಿಂದ ಬರ್ಬರವಾಗಿ ಹತ್ಯೆ ಮಾಡಿರುವ ಘಟನೆ ಪುಣೆಯಲ್ಲಿ ಶನಿವಾರ ರಾತ್ರಿ ನಡೆದಿದೆ.\nಅಂತರ ದಾಸ್ ಕೊಲೆಯಾದ ಮಹಿಳಾ ಟೆಕ್ಕಿಯಾಗಿದ್ದಾರೆ. ಅಂತರಾ ಅವರು ಪಶ್ಚಿಮ ಬಂಗಾಳದ ಮೂಲದವರಾಗಿದ್ದಾರೆ. ಕಳೆದ ರಾತ್ರಿ 8.00 ಗಂಟೆ ಸುಮಾರಿಗೆ ಕೆಲಸ ಮುಗಿಸಿ ಮನೆಗೆ ತೆರಳುತ್ತಿದ್ದ ಸಂದರ್ಭದಲ್ಲಿ ಅಂತರಾ ಅವರ ಮೇಲೆ ದಾಳಿ ಮಾಡಿರುವ ದುಷ್ಕರ್ಮಿಗಳು ಮಾರಾಕಾಸ್ತ್ರಗಳಿಂದ ಹಲ್ಲೆ ನಡೆಸಿದ್ದಾರೆಂದು ಪೊಲೀಸರು ಹೇಳಿದ್ದಾರೆ.\nದಾಳಿ ನಡೆಸಿದ ನಂತರ ರಕ್ತದ ಮಡುವಿನಲ್ಲಿ ಬಿದ್ದು ಒದ್ದಾಡುತ್ತಿದ್ದ ಅಂತರಾ ಅವರನ್ನು ಸ್ಥಳೀಯರು ಆಸ್ಪತ್ರೆಗೆ ದಾಳಸಿದ್ದಾರೆ. ಆದರೆ, ಆಸ್ಪತ್ರೆಗೆ ದಾಖಲಿಸುವಷ್ಟರಲ್ಲಿ ಅಂತರಾ ಅವರು ಸಾವನ್ನಪ್ಪಿದ್ದಾರೆಂದು ಅವರು ಹೇಳಿದ್ದಾರೆ.\nಪ್ರಕರಣ ದಾಖಲಿಸಿಕೊಂಡಿರುವ ಪೊಲೀಸರು ತನಿಖೆ ಆರಂಭಿಸಿದ್ದಾರೆ",

Candidate 1: ಇನ್ಫೋಸಿಸ್ ಮಹಿಳಾ ಟೆಕ್ಕಿಯ ಬರ್ಬರ ಹತ್ಯೆ [correct answer] Candidate 2: ಮಾನಸಿಕ ಅಸ್ವಸ್ಥೆ ಮೇಲೆ ಮಕ್ಕಳ ಕಳ್ಳಿ ಎಂದು ಭೀಕರ ಹಲ್ಲೆ Candidate 3: ಕಸಬ ಬೆಂಗ್ರೆಯಲ್ಲಿ ಮುಸುಕುಧಾರಿಗಳ ತಂಡದಿಂದ ಮೂವರು ಯುವಕರ ಮೇಲೆ ಹಲ್ಲೆ : ಓರ್ವ ಗಂಭೀರ Candidate 4: ಕಣಿವೆ ರಾಜ್ಯದಲ್ಲಿ mobile ಬಂದ್, ಪ್ರಿಂಟಿಂಗ್ ಪ್ರೆಸ್ ಮೇಲೆ ದಾಳಿ

Wikipedia Section Title Prediction

Predict the correct title for a Wikipedia section from a given list of four candidate titles. The dataset has 400k examples across 11 Indian languages.

Section Text:

2005માં, જેકમેન નિર્માણ કંપની, સીડ પ્રોડકશન્સ ઊભી કરવા તેના લાંબાસમયના મદદનીશ જહોન પાલેર્મો સાથે જોડાયા, જેમનો પ્રથમ પ્રોજેકટ 2007માં વિવા લાફલિન હતો. જેકમેનની અભિનેત્રી પત્ની ડેબોરા-લી ફર્નેસ પણ કંપનીમાં જોડાઈ, અને પાલેર્મોએ પોતાના, ફર્નેસ અને જેકમેન માટે “ યુનિટી ” અર્થવાળા લખાણની આ ત્રણ વીંટીઓ બનાવી.[૨૭] ત્રણેયના સહયોગ અંગે જેકમેને જણાવ્યું કે “ મારી જિંદગીમાં જેમની સાથે મેં કામ કર્યું તે ભાગીદારો અંગે ડેબ અને જહોન પાલેર્મો અંગે હું ખૂબ નસીબદાર છું. ખરેખર તેથી કામ થયું. અમારી પાસે જુદું જુદું સાર્મથ્ય હતું. હું તે પસંદ કરતો હતો. I love it. તે ખૂબ ઉત્તેજક છે. ”[૨૮]ફોકસ આધારિત સીડ લેબલ, આમન્ડા સ્કિવેઈટઝર, કેથરિન ટેમ્બલિન, એલન મંડેલબમ અને જોય મરિનો તેમજ સાથે સિડની આધારિત નિર્માણ કચેરીનું સંચાલન કરનાર અલાના ફ્રીનો સમાવેશ થતાં કદમાં વિસ્તૃત બની. આ કંપીનોનો ઉદ્દેશ જેકમેનના વતનના દેશની સ્થાનિક પ્રતિભાને કામે લેવા મધ્યમ બજેટવાળી ફિલ્મો બનાવવાનો છે. 

Candidate 1: એકસ-મેન

Candidate 2: કારકીર્દિ

Candidate 3: નિર્માણ કંપન [correct answer]

Candidate 4: ઓસ્ટ્રેલિય

Cloze-style Question Answering (WCQA)

Given a text with an entity randomly masked, the task is to predict that masked entity from a list of 4 candidate entities. The dataset contains around 239k examples across 11 languages. Example:

Text

ਹੋਮੀ ਭਾਬਾ ਦਾ ਜਨਮ 1949 ਈ ਨੂਂ ਮੁੰਬਈ ਵਿੱਚ ਪਾਰਸੀ ਪਰਿਵਾਰ ਵਿੱਚ ਹੋਇਆ । ਸੇਂਟ ਮੇਰੀ ਤੋਂ ਮੁਢਲੀ ਸਿਖਿਆ ਪ੍ਰਾਪਤ ਕਰਕੇ ਉਹ ਬੰਬੇ ਯੂਨੀਵਰਸਿਟੀ ਗ੍ਰੈਜੁਏਸ਼ਨ ਲਈ ਚਲਾ ਗਿਆ । ਇਸ ਤੋਂ ਬਾਅਦ ਉਹ ਉਚੇਰੀ ਸਿਖਿਆ ਲਈ <MASK> ਚਲਾ ਗਿਆ । ਉਸਨੇ ਓਥੇ ਆਕਸਫੋਰਡ ਯੂਨੀਵਰਸਿਟੀ ਤੋਂ ਐਮ.ਏ ਅਤੇ ਐਮ ਫਿਲ ਦੀਆਂ ਡਿਗਰੀਆਂ ਪ੍ਰਾਪਤ ਕੀਤੀਆਂ । ਤਕਰੀਬਨ ਦਸ ਸਾਲ ਤਕ ਉਸਨੇ ਸੁਸੈਕਸ ਯੂਨੀਵਰਸਿਟੀ ਦੇ ਅੰਗਰੇਜ਼ੀ ਵਿਭਾਗ ਵਿੱਚ ਬਤੌਰ ਲੈਕਚਰਾਰ ਕਾਰਜ ਨਿਭਾਇਆ । ਇਸਤੋਂ ਇਲਾਵਾ ਹੋਮੀ ਭਾਬਾ ਪੈਨਸੁਲਵੇਨਿਆ , ਸ਼ਿਕਾਗੋ ਅਤੇ ਅਮਰੀਕਾ ਦੀ ਹਾਰਵਰਡ ਯੂਨੀਵਰਸਿਟੀ ਵਿੱਚ ਵੀ ਪ੍ਰੋਫ਼ੇਸਰ ਦੇ ਆਹੁਦੇ ਤੇ ਰਿਹਾ ।

Candidate 1: ਬਰਤਾਨੀਆ [correct answer] Candidate 2: ਭਾਰਤ Candidate 3: ਸ਼ਿਕਾਗੋ Candidate 4: ਪਾਕਿਸਤਾਨ

Cross-lingual Sentence Retrieval (XSR)

Given a sentence in language $L_1$ the task is to retrieve its translation from a set of candidate sentences in language $L_2$. The dataset contains around 39k parallel sentence pairs across 8 Indian languages. Example:

Input Sentence

In the health sector the nation has now moved ahead from the conventional approach.

Retrieve the following translation from a set of 4886 sentences:

ആരോഗ്യമേഖലയില് ഇന്ന് രാജ്യം പരമ്പരാഗത രീതികളില് നിന്ന് മുന്നേറിക്കഴിഞ്ഞു.

Additional Evaluation Tasks

Natural Language Inference
  • Winnograd Natural Language Inference (WNLI)
  • Choice of Plausible Alternatives (COPA)
Sentiment Analysis
  • IITP Movie Reviews Sentiment
  • IITP Product Reviews
  • ACTSA Sentiment Classifcation
Genre Classification
  • Soham Articles Genre Classification
  • iNLTK Headlines Genre Classifcation
  • BBC News Articles
Discourse Analysis
  • MIDAS Discourse

Evaluation Results

IndicGLUE
Task mBERT XLM-R IndicBERT
News Article Headline Prediction 89.58 95.52 95.87
Wikipedia Section Title Prediction 73.66 66.33 73.31
Cloze-style multiple-choice QA 39.16 27.98 41.87
Article Genre Classification 90.63 97.03 97.34
Named Entity Recognition (F1-score) 73.24 65.93 64.47
Cross-Lingual Sentence Retrieval Task 21.46 13.74 27.12
Average 64.62 61.09 66.66
Additional Tasks
Task Task Type mBERT XLM-R IndicBERT
BBC News Classification Genre Classification 60.55 75.52 74.60
IIT Product Reviews Sentiment Analysis 74.57 78.97 71.32
IITP Movie Reviews Sentiment Analaysis 56.77 61.61 59.03
Soham News Article Genre Classification 80.23 87.6 78.45
Midas Discourse Discourse Analysis 71.20 79.94 78.44
iNLTK Headlines Classification Genre Classification 87.95 93.38 94.52
ACTSA Sentiment Analysis Sentiment Analysis 48.53 59.33 61.18
Winograd NLI Natural Language Inference 56.34 55.87 56.34
Choice of Plausible Alternative (COPA) Natural Language Inference 54.92 51.13 58.33
Amrita Exact Paraphrase Paraphrase Detection 93.81 93.02 93.75
Amrita Rough Paraphrase Paraphrase Detection 83.38 82.20 84.33
Average 69.84 74.42 73.66

* Note: all models have been restricted to a max_seq_length of 128.

Downloads

The model can be downloaded here. Both tf checkpoints and pytorch binaries are included in the archive. Alternatively, you can also download it from Huggingface.

Citing

If you are using any of the resources, please cite the following article:

@inproceedings{kakwani2020indicnlpsuite,
    title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},
    author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
    year={2020},
    booktitle={Findings of EMNLP},
}

We would like to hear from you if:

  • You are using our resources. Please let us know how you are putting these resources to use.
  • You have any feedback on these resources.

License

The IndicBERT code (and models) are released under the MIT License.

Contributors

  • Divyanshu Kakwani
  • Anoop Kunchukuttan
  • Gokul NC
  • Satish Golla
  • Avik Bhattacharyya
  • Mitesh Khapra
  • Pratyush Kumar

This work is the outcome of a volunteer effort as part of AI4Bharat initiative.

Contact

More Repositories

1

indicnlp_catalog

A collaborative catalog of NLP resources for Indic languages
543
star
2

IndicTrans2

Translation models for 22 scheduled languages of India
Python
223
star
3

indicnlp_corpus

Description Describes the IndicNLP corpus and associated datasets
Python
149
star
4

Indic-TTS

Text-to-Speech for languages of India
Jupyter Notebook
130
star
5

indicTrans

indicTranslate v1 - Machine Translation for 11 Indic languages. For latest v2, check: https://github.com/AI4Bharat/IndicTrans2
Jupyter Notebook
111
star
6

OpenHands

👐OpenHands : Making Sign Language Recognition Accessible. | **NOTE:** No longer actively maintained. If you are interested to own this and take it forward, please raise an issue
Python
97
star
7

Chitralekha

Chitralekha - A video transcreation platform for Indic languages, supporting transcription, translation and voice-over
95
star
8

IndicLLMSuite

A blueprint for creating Pretraining and Fine-Tuning datasets for Indic languages
Python
89
star
9

IndicWav2Vec

Pretraining, fine-tuning and evaluation scripts for Indic-Wav2Vec2
Jupyter Notebook
74
star
10

IndicXlit

Transliteration models for 21 Indic languages
Python
68
star
11

NPTEL2020-Indian-English-Speech-Dataset

NPTEL2020: Speech2Text dataset for Indian-English Accent
Python
68
star
12

IndicBERT

Pretraining, fine-tuning and evaluation scripts for IndicBERT-v2 and IndicXTREME
Python
65
star
13

IndicNLP-Transliteration

Codebase for Indic-Transliteration using Seq2Seq RNN. For latest repo with Transformer-based models, check: https://github.com/AI4Bharat/IndicXlit
Python
58
star
14

Shoonya

Shoonya - Platform to Annotate and label data at scale.
50
star
15

vistaar

Vistaar: Diverse Benchmarks and Training Sets for Indian Language ASR
Python
43
star
16

indic-bart

Pre-trained, multilingual sequence-to-sequence models for Indian languages
Python
43
star
17

Chitralekha-Backend

Transcribe your videos and translate it into Indic languages.
Python
27
star
18

Indic-Input-Tool-UI

Web Interface for Transliteration for Indic languages.
JavaScript
22
star
19

Shoonya-Backend

DRF-based API server for Shoonya platform
Python
20
star
20

Svarah

Swarah: Indian-English speech dataset collected across the country
Python
20
star
21

IndicVoices-R

A Massive Multilingual Multi-speaker Speech Corpus for Scaling Indian TTS
19
star
22

FBI

FBI: Finding Blindspots in LLM Evaluations with Interpretable Checklists
Python
18
star
23

Shoonya-Frontend

JavaScript
16
star
24

Dhruva-Platform

Dhruva is an open-source platform for serving language AI models at scale.
TypeScript
15
star
25

indic-asr-api-backend

Indic-Conformer models for ASR
Python
13
star
26

INCLUDE

Code for INCLUDE paper with pre-trained models
Python
13
star
27

DocSim

Synthetically generate random text document images with ground-truth
Python
11
star
28

Fonts-for-Indian-Scripts

Font style transfer for Devanāgarī script using GANs
Python
10
star
29

aacl23-mnmt-tutorial

Additional resources from our AACL tutorial
10
star
30

adapter-efficiency

Python
10
star
31

IndicLID

Language Identification for Indian languages
Python
9
star
32

setu

Setu is a comprehensive pipeline designed to clean, filter, and deduplicate diverse data sources including Web, PDF, and Speech data. Built on Apache Spark, Setu encompasses four key stages: document preparation, document cleaning and analysis, flagging and filtering, and deduplication.
HTML
9
star
33

speech-transcript-cleaning

Perform cleaning and normalization to standardize speech transcripts (train and test) across datasets.
Python
8
star
34

ezAnnotate

Annotation Platform for Machine Learning / Data Science, forked from DataTurks
JavaScript
7
star
35

Anudesh-Frontend

JavaScript
7
star
36

Chitralekha-Frontend

Frontend for Chitralekha platform
JavaScript
7
star
37

transactional-voice-ai

The code for transactional voice AI
Python
6
star
38

Indic-Glossary-Explorer

Glossary service for Indian languages
JavaScript
6
star
39

workshop-nlg-nlu-2022

Material for AI Workshop on Natural Language Understanding and Generation
6
star
40

indicnlp.ai4bharat.org

Archived old website for AI4Bhārat Indic-NLP
HTML
5
star
41

Chitralekha-Frontend-Lite

Lightweight version of Chitralekha
JavaScript
5
star
42

Indic-Glossaries

Collection of datasets for glossaries in Indian languages
4
star
43

sign-language.ai4bharat.org

Website for Indian Sign Language Recognition
4
star
44

INCLUDE-MS-Teams-Integration

An experimental Microsoft Teams integration of Sign Language models for word-level sign recognition
C#
4
star
45

Anudesh-Backend

Python
4
star
46

IndicMT-Eval

IndicMT Eval: A Dataset to Meta-Evaluate Machine Translation Metrics for Indian Languages, ACL 2023
HTML
4
star
47

IndicVoices

Jupyter Notebook
4
star
48

indic-numtowords

A simple lightweight library for text normalization for Indian Languages
Python
4
star
49

IndicSUPERB

Python
3
star
50

transactional-voice-ai_serving

Deployment code for all the Transactional Voice AI modules.
C++
3
star
51

CTQScorer

Python
3
star
52

Indic-Swipe

IndicSwipe is a collection of datasets and neural model architectures for decoding swipe gesture inputs on touch-based Indic language keyboards across 7 languages.
Python
3
star
53

Indic-OCR

2
star
54

DMU-DataDaan

Codebase for NLTM DMU's Data Upload System
JavaScript
2
star
55

2022.ai4bharat.org

Old website of AI4Bhārat using TinaCMS
JavaScript
2
star
56

setu-translate

Python
2
star
57

models.ai4bharat.org

A one stop platform to try out all the models built by the AI4Bharat team.
JavaScript
2
star
58

Shoonya-Frontend-Old

Old version of Shoonya UI. Latest repo: https://github.com/AI4Bharat/Shoonya-Frontend
JavaScript
2
star
59

Varnam-Transliteration-UI

Transliteration Web Interface
JavaScript
1
star
60

ai4b-website

TypeScript
1
star
61

Dhruva-Evaluation-Suite

A tool to perform functional testing and performance testing of the Dhruva Platform
Python
1
star
62

indicnlp_suite

Natural Language Understanding resources for Indian languages
1
star
63

Input-Tools-By-AI4bharat

Enhance your typing experience in Chrome with AI4Bharat's Input Tools Chrome extension. This extension provides real-time transliteration suggestions for Indian languages, offering seamless integration into your typing workflow.
JavaScript
1
star
64

Lahaja

This repository holds the artifacts of 'LAHAJA: A Robust Multi-accent Benchmark for Evaluating Hindi ASR Systems'
1
star
65

Rasa

Expressive TTS Dataset for Assamese, Bengali, and Tamil.
Python
1
star
66

NeMo

Python
1
star
67

VocabAdaptation_LLM

Python
1
star