• Stars
    star
    162
  • Rank 232,284 (Top 5 %)
  • Language
    Jupyter Notebook
  • License
    MIT License
  • Created over 3 years ago
  • Updated over 3 years ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Code for TSP Transformer

TSP Transformer

Feb, 2021

Description

PyTorch implementation of "The Transformer Network for the Traveling Salesman Problem"
Xavier Bresson and Thomas Laurent
ArXiv : https://arxiv.org/pdf/2103.03012.pdf
Talk : https://ipam.wistia.com/medias/0jrweluovs
Slides : https://t.co/ySxGiKtQL5


Installation

# Install conda
curl -o ~/miniconda.sh -O https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh 
chmod +x ~/miniconda.sh  # install conda  
./miniconda.sh  
source ~/.bashrc  

# GitHub repo
conda install git
git clone https://github.com/xbresson/TSP_Transformer.git # clone repo
cd TSP_Transformer
conda env create -f environment_gpu.yml # install python environment (CUDA 10.1)
conda activate tsp_transformer # activate environment
jupyter notebook # start jupyter notebook

Results

  1. Network Training (with RTX 2080 Ti 11GB)
    TSP50 (1 GPU) : Run notebook 'train_tsp_transformer_TSP50.ipynb'
    TSP100 (2 GPUs) : Run notebook 'train_tsp_transformer_TSP100.ipynb'
  2. Network Testing
    TSP50 : Run notebook 'test_tsp_transformer_beamsearch_TSP50.ipynb'. Optimality gap: -0.004%.
    TSP100 : Run notebook 'test_tsp_transformer_beamsearch_TSP100.ipynb'. Optimality gap: 0.371%.
  3. Visualization
    TSP50 : Run notebook 'visualization_TSP50.ipynb'
    TSP100 : Run notebook 'visualization_TSP100.ipynb'




More Repositories

1

GML2023

Graph Machine Learning course, Xavier Bresson, 2023
Jupyter Notebook
558
star
2

CS6208_2023

Advanced Topics in Artificial Intelligence, NUS CS6208, 2023
Jupyter Notebook
307
star
3

spectral_graph_convnets

PyTorch implementation of spectral graph ConvNets, NeurIPS’16
HTML
291
star
4

CE7454_2019

Deep learning course CE7454, 2019
Jupyter Notebook
189
star
5

CS5242_2021

Neural Networks and Deep Learning, NUS CS5242, 2021
Jupyter Notebook
180
star
6

CS4243_2022

Computer Vision and Pattern Recognition, NUS CS4243, 2022
Jupyter Notebook
161
star
7

spatial_graph_convnets

PyTorch implementation of residual gated graph ConvNets, ICLR’18
Jupyter Notebook
121
star
8

CE7454_2018

Deep learning course CE7454, 2018
Jupyter Notebook
76
star
9

CE9010_2018

Python notebooks and slides for CE9010: Introduction to Data Science, Semester 2 2017/18
Jupyter Notebook
52
star
10

CS5284_2024

NUS CS5284 Graph Machine Learning course, Xavier Bresson, 2024
Jupyter Notebook
51
star
11

CE7454_2020

Deep learning course CE7454, 2020
Jupyter Notebook
28
star
12

IPAM_Tutorial_2019

Notebooks for IPAM Tutorial, March 15 2019
Jupyter Notebook
24
star
13

AI6103_2020

Master of AI, Deep learning course AI6103, 2020
Jupyter Notebook
22
star
14

old_codes

HTML
15
star
15

CE9010_2019

CE9010 Introduction to Data Analysis, 2019
Jupyter Notebook
11
star
16

Long_Tailed_Learning_Requires_Feature_Learning

Repository for ICLR'23 Long-tailed Learning Requires Feature Learning
Python
10
star
17

CE9010_2020

CE9010 Introduction to Data Analysis, 2020
Jupyter Notebook
7
star
18

feature_collapse

Code for "Feature Collapse"
Jupyter Notebook
6
star
19

CE9010_2021

CE9010 Introduction to Data Analysis, 2021
Jupyter Notebook
5
star
20

pcut

Code for Product Cut clustering technique, NIPS'16
Jupyter Notebook
4
star
21

Teaching_Resources

Xavier Bresson's Teaching Resources
HTML
2
star
22

demo_pytorch_dqn__with_4_observations

Jupyter Notebook
2
star