README
praudio provides objects and a script for performing complex preprocessing operations on entire audio datasets with one command.
praudio is implemented having Deep Learning audio/music applications in mind.
Operations are carried out on CPU. Preprocessing can also be run on-the-fly, for example, while training a model.
The library uses librosa
as an audio processing backend.
How do I install the library?
You can install praudio both with pip
via PyPi, and by cloning the
praudio repo from GitHub.
For both approaches, it's advisable to use a dedicated Python virtual environment.
Installing from PyPi
Installing from PyPi is the easiest option. In the terminal type:
$ pip install praudio
Installing from GitHub
First, you should clone the repository from GitHub:
$ git clone [email protected]:musikalkemist/praudio.git
Then, move to the project root and, to install the package, type in the terminal:
$ pip install .
You can also use a rule in the available Makefile (see below):
$ make install
To install the package in development mode use:
$ pip install -e .[testing]
You can also use a rule in Makefile:
$ make install_dev
This will install all the packages necessary to run the tests, lint, type checker. It will also install the package in 'editable' mode, which is ideal for development.
Python version
praudio works in Python 3.6, 3.7, 3.8.
How do I preprocess an audio dataset?
The core of the library is the preprocess entry point. This script works with a config file. You set the type of preprocessing you want to apply in a yaml file, and then run the script. Your dataset will be entirely preprocessed and the results recursively stored in a directory of your choice that can potentially be created from scratch.
To run the entry point, ensure the library is installed and then type:
$ preprocess /path/to/config.yml
In the config.yml, you should provide the following parameters:
dataset_dir
: Path to the directory where your audio dataset is storedsave_dir
: Path where to save the preprocessed audio.- Under
file_preprocessor
, you should provide settings forloader
andtransforms_chain
. loader
: Provide settings for the loader.transforms_chain
: Parameters for each transform in the sequence. of transforms which are applied to your data (i.e., TransformChain).
These config parameters are used to dinamically initialise the relative objects in the library. To learn what parameters are available at each level in the config file, please refer to the docstrings in the relative objects.
Check out test/config.sampleconfig.yml
to see an example of a valid config
file.
Package structure
The package is divided into a number of subpackages:
- config
- creation
- io
- preprocessors
- transforms
config
has facilities to load, save, and validate configuration files,
which are used to specify the types of preprocessing pipelines to use.
creation
has classes that are responsible to instantiate key objects in
the library.
io
contains facilities to load / save audio signals from / to files.
preprocessors
features objects which are responsible to preprocess single
audio files, from loading to storing, as well as, batch of files.
transforms
contains a series of objects which manipulate audio signals,
such as short-time Fourier transform, log, scaling.
What's the Makefile for?
The Makefile has a series of rules that can be used to ensure quality of the code, and automate repetitive tasks.
Linter
The project uses pylint
. The linter helps enforcing a coding
standard, sniffs for code smells and offers simple refactoring suggestions.
To run the linter type:
$ make lint
Typehint
The project uses mypy
. mypy
is an optional static type checker for
Python. You can add type hints (PEP 484) to your Python programs,
and use mypy to type check them statically.
To run the type checker type:
$ make typehint
Testing
The project uses pytest
for unittests. Tests can be run in one go using
coverage
. This package suggests the percentage of code that is covered in
unittests.
To run all the unittests type:
$ make test
Checklist
Checklist is a utility rule that runs the linter, type checker, and the test suite in one go:
$ make checklist
Clean
Use the clean rule to get rid of pyc
files and __pychache__
:
$ make clean
Dependencies
praudio has the following dependencies:
- librosa==0.8.1
- pyyaml==5.4.1
- types-PyYAML==5.4.6
librosa
is extensively used to extract audio features in transform objects.
Current limitations
The praudio preprocessors are capable of operating only on mono signals. This is a significant limitation if you are working in generative music. If you are using the library for audio / music analysis, this shouldn't be a problem.
Future improvements
- Add audio augmentation / padding / cropping transforms.
- Enable preprocessing of signals with multiple channels.
- Turn transform parameters into full-fledged objects (e.g., STFTParams)
- Instead of using a dictionary for configurations, instantiate parameter objects with validation
- Implement different types of Savers / Loaders with factories to produce them.