• Stars
    star
    187
  • Rank 206,464 (Top 5 %)
  • Language
    Python
  • Created over 1 year ago
  • Updated over 1 year ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

Crowdfunding open source projects: use OpenReview's high-quality review data to fine-tune a professional review and response LLM. 众筹开源项目:利用OpenReview的优质审稿数据,微调出一个专业的审稿和审稿回复GPT

ChatOpenReview

众筹开源项目:利用OpenReview的优质审稿数据,微调出一个专业的审稿和审稿回复GPT

进展

4.26 First domain: Reinforcement Learning Domain Fineturned model have a good result we decided to fineturn in difference domain, AI area first, expected will be: {1. Reinforcment Learning 2. Computer Vision 3. NLP 4. Robotics 5. AI4S}

Any other suggestions please feel free to command in issue

Sample Result:


Input:  Optimization-Based Algebraic Multigrid Coarsening Using Reinforcement Learning
Output: 
Title: Optimization-Based Algebraic Multigrid Coarsening Using Reinforcement Learning
Authors: Ali Taghibakhshi, Scott MacLachlan, Luke Olson, Matthew West

This paper addresses the problem of grid coarsening for algebraic multigrid (AMG) methods by proposing a reinforcement learning (RL) method using graph neural networks (GNNs). The authors present a novel approach based on dueling double-DQN agents with topology adaptive convolution layers (TAGCN) that outperforms existing heuristic methods while preserving theoretical guarantees for convergence. Additionally, the proposed method demonstrates scalability with a linear graph-decomposition-based evaluation algorithm.

Strengths:

- The paper provides a clear background and motivation for the research, addressing shortcomings in existing methods and presenting a well-defined problem.
- The proposed RL method using GNNs shows promising results, outperforming existing heuristic methods and preserving theoretical convergence guarantees.
- The paper demonstrates the scalability of the proposed method, which is an essential aspect for the practical application of grid coarsening in AMG methods.

Weaknesses:

- The RL agent is specialized for solving Poisson's equation on 2D grids, limiting its applicability to other problems and requiring further research to generalize the approach.
- The paper does not provide a thorough comparison with other machine learning-based approaches or address their limitations.
-  While the paper demonstrates the scalability of the proposed method, it does not provide a detailed analysis of the computational cost associated with training the RL agent and the GNN. Understanding the trade-off between the time taken for training and the improvements achieved in grid coarsening would provide a more comprehensive assessment of the method's practicality.
- The paper does not discuss the robustness of the proposed method to noisy or imperfect input data. In real-world applications, it is crucial to understand how sensitive the RL-based GNN approach is to such variations and whether any pre-processing or additional steps are necessary to ensure its reliability.
- The paper tests the proposed method on the 2D Poisson problem with various unstructured grids. However, it would be beneficial to evaluate the method's performance on a wider range of benchmark problems to further validate its applicability and effectiveness.
- The paper does not provide details on the hyperparameter tuning process or model selection for the RL agent and GNN. Understanding how these choices were made and how sensitive the results are to different hyperparameter settings would help establish the robustness and generalizability of the proposed method.

Overall, the paper presents a well-motivated and innovative approach to grid coarsening for AMG methods, successfully addressing the problem and showing promising results. However, the paper could benefit from a broader discussion of related machine learning-based approaches and further investigation into generalizing the proposed method.

4.25 敬请期待第一个微调小模型的发布

4.18 今天已经爬取了NIPS22的审稿数据,匹配好了审稿和审稿回复信息。下载链接如下:NeurIPS_2022_reviews.json 提取码: xp21 如果大家有发现匹配不上的文章,欢迎及时报告!

4.14 今天已经尝试爬取NIPS22的审稿数据

爬取数据教程:

  1. 查阅官网文档:https://docs.openreview.net/getting-started/using-the-api/installing-and-instantiating-the-python-client
  2. 安装python库: 进入一个新的虚拟环境,比如chatreview, python3.8
git clone git@github.com:openreview/openreview-py.git
cd openreview-py
pip3 install -e .
  1. 不注册也行:在openreview官网注册账号,报错用户邮箱和密码,填入get_reviewers.py的对应位置
  2. 设置网络,如果在国内,需要魔法,且需要将网络设置为tun模式:参考这个链接:tun设置
  3. 注意,数据保存格式需要仔细查看,当前的txt格式可能后期不好提取;官方文档推荐的是csv:export to csv
  4. 目前的格式前几个审稿content是审稿的,后面几个是作者的回复,大家后期可以做数据清洗时注意下。

数据来源

openreview官方提供数据批量下载:https://docs.openreview.net/getting-started/using-the-api/notes/exporting-all-reviews-into-a-csv 以及之前ACL的这篇杰出工作:A Meta-Review Dataset for Controllable Text Generation

准备工作:

  1. 阅读meta-review的论文,梳理这篇工作解决的问题,借鉴他们的思路--需要一位同学看完,给大家做汇报;
  2. 下载和分析meta-review的数据,分析格式和效果;--需要一位会python的同学做梳理。
  3. OpenReview的其他会议的数据爬取和清洗;--需要一位会python或者jave的同学爬取,还需要一定的存储能力。我之前试过爬取简单的爬取,但是没有拿到审稿信息;
  4. 挑选一个文本输出长度不低于4K token的开源LLM模型--需要一位熟悉LLM的同学,最好是微调过LLM的同学。
  5. 设计一个方案,实现PDF论文的长文本+审稿prompt的压缩,或者滑动输入。--需要一个懂NLP和LLM的同学
  6. 制备指令微调数据集--同上

希望大家领取任务后,自己评估一下任务周期,咱们尽量一两天同步一次进度。

团队招募:

  1. 做过LLMs微调工作的大佬 or 其他代码能力强的同学
  2. 有计算资源的带佬,哈哈
  3. 对这个项目感兴趣,且愿意投入时间和精力的同学

联系方式:

主页有我的QQ邮箱,欢迎对项目感兴趣的大佬们加QQ好友,或者邮件联系!

最近加的人比较多,敬请附上学校/公司,技术栈,以及动机,麻烦大家了!

明天准备和meta-review的作者团队联系

项目引用:

Please cite the repo if you use the data or code in this repo.

@misc{ChatOpenReview,
  author={Yongle Luo, zhuhaojia, Shaocong Ma},
  title = {ChatOpenReview: A Language model for Paper Review and Response},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/kaixindelele/ChatOpenReview}},
}

More Repositories

1

ChatPaper

Use ChatGPT to summarize the arXiv papers. 全流程加速科研,利用chatgpt进行论文全文总结+专业翻译+润色+审稿+审稿回复
Python
18,360
star
2

DRLib

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.
Python
468
star
3

RHER

The official code for paper “Relay Hindsight Experience Replay: Self-Guided Continual Reinforcement Learning for Sequential Object Manipulation Tasks with Sparse Rewards”
Python
109
star
4

ssd1306-MicroPython-ESP32-Chinese

ssd1306OLED显示屏-MicroPython-ESP32-中文显示-利用GB2312字库(非手动取模)
Python
100
star
5

ChatSensitiveWords

利用LLM+敏感词库,来自动判别是否涉及敏感词。
Python
73
star
6

CVPR2023Summary

CVPR2023所有论文免费打包下载+ ChatPaper所有论文总结免费下载
Python
57
star
7

DRL-tensorflow

My DRL library with tensorflow1.14 based on openai spinning-up
Python
54
star
8

OpenCV-real-world-red-cube-detection

OpenCV-real-world-red-cube-detection-真实场景红色物块三维坐标检测
Python
38
star
9

Mujoco-Issues

欢迎大家在issues中挂自己mujoco开发过程中遇到的问题,也欢迎大家去帮忙解决其他人的问题,互相学习互相进步。
29
star
10

Eye-to-Hand-Calibration

Eye-to-Hand Calibration,摄像机固定,与机器人基坐标系相对位置不变。且机器人末端在固定平面移动,即只需要求一个单应性矩阵的变换关系就行。
Python
29
star
11

tensorflow_notebook

【北京大学】人工智能实践:Tensorflow笔记 手敲代码共享
Jupyter Notebook
26
star
12

ros_demo_mooc

ROS机器人操作系统入门-中国大学MOOC学习笔记和讲义笔记 https://www.bilibili.com/video/av24585414/?p=22
25
star
13

CSDN_pageviews_spider_tomysql_and_visualize

CSDN爬虫+远程服务器MySQL存储+数据可视化
Python
14
star
14

image-perspective-transformation

python处理图片,包括图片平移、图片旋转、图片缩放、图片翻转、透视变换。选择图片中的四个关键点和将要变换的点,用来生成新的透视图
Python
11
star
15

GymFetch

gym_fetch_env with insert drawer open door
Python
8
star
16

DQN-keras-visualization-with-gridworld

DQN-keras-visualization-with-gridworld,强化学习可视化,觉得有意思的,记得点star哈。
Python
6
star
17

Get-Key-Papers-From-Web-about-spinning-up

Get All Key Papers From Web about spinning up with python
Python
5
star
18

USTC-VPN-in-ubuntu

中科大(ustc)-openvpn-Ubuntu环境配置教程(丫的,我发到github上,不会被删了吧?不会吧?惊恐~)
5
star
19

tensorflow-models-data_diy

tensorflow目标检测API,使用faster-rcnn训练自己的数据,所需要的一些脚本
Python
4
star
20

ResRace

The official code for paper “Residual Policy Learning Facilitates Efficient Model-Free Autonomous Racing”
Python
2
star
21

train-keras-yolo-v4-with-simulation-images

train-keras-Yolo-v4-with-simulation-images, 从mujoco仿真环境产生图片,添加一些小脚本生成voc格式的数据,用来训练yolo
Python
2
star
22

gpt_academic

学术版GPT版本控制失败后的重起炉灶
Python
1
star
23

tensorflow_cifar10_vgg16_keras_read

Python
1
star
24

Study-System

A very simple study system, I hope this system can combine my study tasks and my entertainment, and then balance my life.
Python
1
star
25

kaixindelele

Python
1
star
26

iim_ws_robot_nav

需要认真看和注释的代码
Python
1
star
27

self_demo

日常练习demo文件夹
Python
1
star
28

Reinforcement-learning-with-tensorflow

follow Movan's course and changed some functions.
Python
1
star