• Stars
    star
    709
  • Rank 63,849 (Top 2 %)
  • Language
    Python
  • License
    MIT License
  • Created over 5 years ago
  • Updated about 1 month ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

InfluxDB 2.0 python client

influxdb-client-python

CircleCI codecov CI status PyPI package Anaconda.org package Supported Python versions Documentation status Slack Status

This repository contains the Python client library for use with InfluxDB 2.x and Flux. InfluxDB 3.x users should instead use the lightweight v3 client library. InfluxDB 1.x users should use the v1 client library.

For ease of migration and a consistent query and write experience, v2 users should consider using InfluxQL and the v1 client library.

The API of the influxdb-client-python is not the backwards-compatible with the old one - influxdb-python.

Documentation

This section contains links to the client library documentation.

InfluxDB 2.0 client features

Installation

InfluxDB python library uses RxPY - The Reactive Extensions for Python (RxPY).

Python 3.7 or later is required.

Note

It is recommended to use ciso8601 with client for parsing dates. ciso8601 is much faster than built-in Python datetime. Since it's written as a C module the best way is build it from sources:

Windows:

You have to install Visual C++ Build Tools 2015 to build ciso8601 by pip.

conda:

Install from sources: conda install -c conda-forge/label/cf202003 ciso8601.

pip install

The python package is hosted on PyPI, you can install latest version directly:

pip install 'influxdb-client[ciso]'

Then import the package:

import influxdb_client

If your application uses async/await in Python you can install with the async extra:

$ pip install influxdb-client[async]

For more info se How to use Asyncio.

Setuptools

Install via Setuptools.

python setup.py install --user

(or sudo python setup.py install to install the package for all users)

Getting Started

Please follow the Installation and then run the following:

from influxdb_client import InfluxDBClient, Point
from influxdb_client.client.write_api import SYNCHRONOUS

bucket = "my-bucket"

client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org")

write_api = client.write_api(write_options=SYNCHRONOUS)
query_api = client.query_api()

p = Point("my_measurement").tag("location", "Prague").field("temperature", 25.3)

write_api.write(bucket=bucket, record=p)

## using Table structure
tables = query_api.query('from(bucket:"my-bucket") |> range(start: -10m)')

for table in tables:
    print(table)
    for row in table.records:
        print (row.values)


## using csv library
csv_result = query_api.query_csv('from(bucket:"my-bucket") |> range(start: -10m)')
val_count = 0
for row in csv_result:
    for cell in row:
        val_count += 1

Client configuration

Via File

A client can be configured via *.ini file in segment influx2.

The following options are supported:

  • url - the url to connect to InfluxDB
  • org - default destination organization for writes and queries
  • token - the token to use for the authorization
  • timeout - socket timeout in ms (default value is 10000)
  • verify_ssl - set this to false to skip verifying SSL certificate when calling API from https server
  • ssl_ca_cert - set this to customize the certificate file to verify the peer
  • cert_file - path to the certificate that will be used for mTLS authentication
  • cert_key_file - path to the file contains private key for mTLS certificate
  • cert_key_password - string or function which returns password for decrypting the mTLS private key
  • connection_pool_maxsize - set the number of connections to save that can be reused by urllib3
  • auth_basic - enable http basic authentication when talking to a InfluxDB 1.8.x without authentication but is accessed via reverse proxy with basic authentication (defaults to false)
  • profilers - set the list of enabled Flux profilers
self.client = InfluxDBClient.from_config_file("config.ini")
[influx2]
url=http://localhost:8086
org=my-org
token=my-token
timeout=6000
verify_ssl=False

Via Environment Properties

A client can be configured via environment properties.

Supported properties are:

  • INFLUXDB_V2_URL - the url to connect to InfluxDB
  • INFLUXDB_V2_ORG - default destination organization for writes and queries
  • INFLUXDB_V2_TOKEN - the token to use for the authorization
  • INFLUXDB_V2_TIMEOUT - socket timeout in ms (default value is 10000)
  • INFLUXDB_V2_VERIFY_SSL - set this to false to skip verifying SSL certificate when calling API from https server
  • INFLUXDB_V2_SSL_CA_CERT - set this to customize the certificate file to verify the peer
  • INFLUXDB_V2_CERT_FILE - path to the certificate that will be used for mTLS authentication
  • INFLUXDB_V2_CERT_KEY_FILE - path to the file contains private key for mTLS certificate
  • INFLUXDB_V2_CERT_KEY_PASSWORD - string or function which returns password for decrypting the mTLS private key
  • INFLUXDB_V2_CONNECTION_POOL_MAXSIZE - set the number of connections to save that can be reused by urllib3
  • INFLUXDB_V2_AUTH_BASIC - enable http basic authentication when talking to a InfluxDB 1.8.x without authentication but is accessed via reverse proxy with basic authentication (defaults to false)
  • INFLUXDB_V2_PROFILERS - set the list of enabled Flux profilers
self.client = InfluxDBClient.from_env_properties()

Profile query

The Flux Profiler package provides performance profiling tools for Flux queries and operations.

You can enable printing profiler information of the Flux query in client library by:

  • set QueryOptions.profilers in QueryApi,
  • set INFLUXDB_V2_PROFILERS environment variable,
  • set profilers option in configuration file.

When the profiler is enabled, the result of flux query contains additional tables "profiler/*". In order to have consistent behaviour with enabled/disabled profiler, FluxCSVParser excludes "profiler/*" measurements from result.

Example how to enable profilers using API:

q = '''
    from(bucket: stringParam)
      |> range(start: -5m, stop: now())
      |> filter(fn: (r) => r._measurement == "mem")
      |> filter(fn: (r) => r._field == "available" or r._field == "free" or r._field == "used")
      |> aggregateWindow(every: 1m, fn: mean)
      |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
'''
p = {
    "stringParam": "my-bucket",
}

query_api = client.query_api(query_options=QueryOptions(profilers=["query", "operator"]))
csv_result = query_api.query(query=q, params=p)

Example of a profiler output:

===============
Profiler: query
===============

from(bucket: stringParam)
  |> range(start: -5m, stop: now())
  |> filter(fn: (r) => r._measurement == "mem")
  |> filter(fn: (r) => r._field == "available" or r._field == "free" or r._field == "used")
  |> aggregateWindow(every: 1m, fn: mean)
  |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")

========================
Profiler: profiler/query
========================
result              : _profiler
table               : 0
_measurement        : profiler/query
TotalDuration       : 8924700
CompileDuration     : 350900
QueueDuration       : 33800
PlanDuration        : 0
RequeueDuration     : 0
ExecuteDuration     : 8486500
Concurrency         : 0
MaxAllocated        : 2072
TotalAllocated      : 0
flux/query-plan     :

digraph {
  ReadWindowAggregateByTime11
  // every = 1m, aggregates = [mean], createEmpty = true, timeColumn = "_stop"
  pivot8
  generated_yield

  ReadWindowAggregateByTime11 -> pivot8
  pivot8 -> generated_yield
}


influxdb/scanned-bytes: 0
influxdb/scanned-values: 0

===========================
Profiler: profiler/operator
===========================
result              : _profiler
table               : 1
_measurement        : profiler/operator
Type                : *universe.pivotTransformation
Label               : pivot8
Count               : 3
MinDuration         : 32600
MaxDuration         : 126200
DurationSum         : 193400
MeanDuration        : 64466.666666666664

===========================
Profiler: profiler/operator
===========================
result              : _profiler
table               : 1
_measurement        : profiler/operator
Type                : *influxdb.readWindowAggregateSource
Label               : ReadWindowAggregateByTime11
Count               : 1
MinDuration         : 940500
MaxDuration         : 940500
DurationSum         : 940500
MeanDuration        : 940500.0

You can also use callback function to get profilers output. Return value of this callback is type of FluxRecord.

Example how to use profilers with callback:

 class ProfilersCallback(object):
    def __init__(self):
        self.records = []

    def __call__(self, flux_record):
        self.records.append(flux_record.values)

callback = ProfilersCallback()

query_api = client.query_api(query_options=QueryOptions(profilers=["query", "operator"], profiler_callback=callback))
tables = query_api.query('from(bucket:"my-bucket") |> range(start: -10m)')

for profiler in callback.records:
    print(f'Custom processing of profiler result: {profiler}')

Example output of this callback:

Custom processing of profiler result: {'result': '_profiler', 'table': 0, '_measurement': 'profiler/query', 'TotalDuration': 18843792, 'CompileDuration': 1078666, 'QueueDuration': 93375, 'PlanDuration': 0, 'RequeueDuration': 0, 'ExecuteDuration': 17371000, 'Concurrency': 0, 'MaxAllocated': 448, 'TotalAllocated': 0, 'RuntimeErrors': None, 'flux/query-plan': 'digraph {\r\n  ReadRange2\r\n  generated_yield\r\n\r\n  ReadRange2 -> generated_yield\r\n}\r\n\r\n', 'influxdb/scanned-bytes': 0, 'influxdb/scanned-values': 0}
Custom processing of profiler result: {'result': '_profiler', 'table': 1, '_measurement': 'profiler/operator', 'Type': '*influxdb.readFilterSource', 'Label': 'ReadRange2', 'Count': 1, 'MinDuration': 3274084, 'MaxDuration': 3274084, 'DurationSum': 3274084, 'MeanDuration': 3274084.0}

How to use

Writes

The WriteApi supports synchronous, asynchronous and batching writes into InfluxDB 2.0. The data should be passed as a InfluxDB Line Protocol, Data Point or Observable stream.

Warning

The WriteApi in batching mode (default mode) is suppose to run as a singleton. To flush all your data you should wrap the execution using with client.write_api(...) as write_api: statement or call write_api.close() at the end of your script.

The default instance of WriteApi use batching.

The data could be written as

  1. string or bytes that is formatted as a InfluxDB's line protocol
  2. Data Point structure
  3. Dictionary style mapping with keys: measurement, tags, fields and time or custom structure
  4. NamedTuple
  5. Data Classes
  6. Pandas DataFrame
  7. List of above items
  8. A batching type of write also supports an Observable that produce one of an above item

You can find write examples at GitHub: influxdb-client-python/examples.

Batching

The batching is configurable by write_options:

Property Description Default Value
batch_size the number of data point to collect in a batch 1000
flush_interval the number of milliseconds before the batch is written 1000
jitter_interval the number of milliseconds to increase the batch flush interval by a random amount 0
retry_interval the number of milliseconds to retry first unsuccessful write. The next retry delay is computed using exponential random backoff. The retry interval is used when the InfluxDB server does not specify "Retry-After" header. 5000
max_retry_time maximum total retry timeout in milliseconds. 180_000
max_retries the number of max retries when write fails 5
max_retry_delay the maximum delay between each retry attempt in milliseconds 125_000
max_close_wait the maximum amount of time to wait for batches to flush when .close() is called 300_000
exponential_base the base for the exponential retry delay, the next delay is computed using random exponential backoff as a random value within the interval retry_interval * exponential_base^(attempts-1) and retry_interval * exponential_base^(attempts). Example for retry_interval=5_000, exponential_base=2, max_retry_delay=125_000, total=5 Retry delays are random distributed values within the ranges of [5_000-10_000, 10_000-20_000, 20_000-40_000, 40_000-80_000, 80_000-125_000] 2
from datetime import datetime, timedelta

import pandas as pd
import reactivex as rx
from reactivex import operators as ops

from influxdb_client import InfluxDBClient, Point, WriteOptions

with InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org") as _client:

    with _client.write_api(write_options=WriteOptions(batch_size=500,
                                                      flush_interval=10_000,
                                                      jitter_interval=2_000,
                                                      retry_interval=5_000,
                                                      max_retries=5,
                                                      max_retry_delay=30_000,
                                                      max_close_wait=300_000,
                                                      exponential_base=2)) as _write_client:

        """
        Write Line Protocol formatted as string
        """
        _write_client.write("my-bucket", "my-org", "h2o_feet,location=coyote_creek water_level=1.0 1")
        _write_client.write("my-bucket", "my-org", ["h2o_feet,location=coyote_creek water_level=2.0 2",
                                                    "h2o_feet,location=coyote_creek water_level=3.0 3"])

        """
        Write Line Protocol formatted as byte array
        """
        _write_client.write("my-bucket", "my-org", "h2o_feet,location=coyote_creek water_level=1.0 1".encode())
        _write_client.write("my-bucket", "my-org", ["h2o_feet,location=coyote_creek water_level=2.0 2".encode(),
                                                    "h2o_feet,location=coyote_creek water_level=3.0 3".encode()])

        """
        Write Dictionary-style object
        """
        _write_client.write("my-bucket", "my-org", {"measurement": "h2o_feet", "tags": {"location": "coyote_creek"},
                                                    "fields": {"water_level": 1.0}, "time": 1})
        _write_client.write("my-bucket", "my-org", [{"measurement": "h2o_feet", "tags": {"location": "coyote_creek"},
                                                     "fields": {"water_level": 2.0}, "time": 2},
                                                    {"measurement": "h2o_feet", "tags": {"location": "coyote_creek"},
                                                     "fields": {"water_level": 3.0}, "time": 3}])

        """
        Write Data Point
        """
        _write_client.write("my-bucket", "my-org",
                            Point("h2o_feet").tag("location", "coyote_creek").field("water_level", 4.0).time(4))
        _write_client.write("my-bucket", "my-org",
                            [Point("h2o_feet").tag("location", "coyote_creek").field("water_level", 5.0).time(5),
                             Point("h2o_feet").tag("location", "coyote_creek").field("water_level", 6.0).time(6)])

        """
        Write Observable stream
        """
        _data = rx \
            .range(7, 11) \
            .pipe(ops.map(lambda i: "h2o_feet,location=coyote_creek water_level={0}.0 {0}".format(i)))

        _write_client.write("my-bucket", "my-org", _data)

        """
        Write Pandas DataFrame
        """
        _now = datetime.utcnow()
        _data_frame = pd.DataFrame(data=[["coyote_creek", 1.0], ["coyote_creek", 2.0]],
                                   index=[_now, _now + timedelta(hours=1)],
                                   columns=["location", "water_level"])

        _write_client.write("my-bucket", "my-org", record=_data_frame, data_frame_measurement_name='h2o_feet',
                            data_frame_tag_columns=['location'])

Default Tags

Sometimes is useful to store same information in every measurement e.g. hostname, location, customer. The client is able to use static value or env property as a tag value.

The expressions:

  • California Miner - static value
  • ${env.hostname} - environment property
Via API
point_settings = PointSettings()
point_settings.add_default_tag("id", "132-987-655")
point_settings.add_default_tag("customer", "California Miner")
point_settings.add_default_tag("data_center", "${env.data_center}")

self.write_client = self.client.write_api(write_options=SYNCHRONOUS, point_settings=point_settings)
self.write_client = self.client.write_api(write_options=SYNCHRONOUS,
                                              point_settings=PointSettings(**{"id": "132-987-655",
                                                                              "customer": "California Miner"}))
Via Configuration file

In a init configuration file you are able to specify default tags by tags segment.

self.client = InfluxDBClient.from_config_file("config.ini")
[influx2]
url=http://localhost:8086
org=my-org
token=my-token
timeout=6000

[tags]
id = 132-987-655
customer = California Miner
data_center = ${env.data_center}

You can also use a TOML or a JSON format for the configuration file.

Via Environment Properties

You are able to specify default tags by environment properties with prefix INFLUXDB_V2_TAG_.

Examples:

  • INFLUXDB_V2_TAG_ID
  • INFLUXDB_V2_TAG_HOSTNAME
self.client = InfluxDBClient.from_env_properties()

Synchronous client

Data are writes in a synchronous HTTP request.

from influxdb_client import InfluxDBClient, Point
from influxdb_client .client.write_api import SYNCHRONOUS

client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org")
write_api = client.write_api(write_options=SYNCHRONOUS)

_point1 = Point("my_measurement").tag("location", "Prague").field("temperature", 25.3)
_point2 = Point("my_measurement").tag("location", "New York").field("temperature", 24.3)

write_api.write(bucket="my-bucket", record=[_point1, _point2])

client.close()

Queries

The result retrieved by QueryApi could be formatted as a:

  1. Flux data structure: FluxTable, FluxColumn and FluxRecord
  2. :class:`~influxdb_client.client.flux_table.CSVIterator` which will iterate over CSV lines
  3. Raw unprocessed results as a str iterator
  4. Pandas DataFrame

The API also support streaming FluxRecord via query_stream, see example below:

from influxdb_client import InfluxDBClient, Point, Dialect
from influxdb_client.client.write_api import SYNCHRONOUS

client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org")

write_api = client.write_api(write_options=SYNCHRONOUS)
query_api = client.query_api()

"""
Prepare data
"""

_point1 = Point("my_measurement").tag("location", "Prague").field("temperature", 25.3)
_point2 = Point("my_measurement").tag("location", "New York").field("temperature", 24.3)

write_api.write(bucket="my-bucket", record=[_point1, _point2])

"""
Query: using Table structure
"""
tables = query_api.query('from(bucket:"my-bucket") |> range(start: -10m)')

for table in tables:
    print(table)
    for record in table.records:
        print(record.values)

print()
print()

"""
Query: using Bind parameters
"""

p = {"_start": datetime.timedelta(hours=-1),
     "_location": "Prague",
     "_desc": True,
     "_floatParam": 25.1,
     "_every": datetime.timedelta(minutes=5)
     }

tables = query_api.query('''
    from(bucket:"my-bucket") |> range(start: _start)
        |> filter(fn: (r) => r["_measurement"] == "my_measurement")
        |> filter(fn: (r) => r["_field"] == "temperature")
        |> filter(fn: (r) => r["location"] == _location and r["_value"] > _floatParam)
        |> aggregateWindow(every: _every, fn: mean, createEmpty: true)
        |> sort(columns: ["_time"], desc: _desc)
''', params=p)

for table in tables:
    print(table)
    for record in table.records:
        print(str(record["_time"]) + " - " + record["location"] + ": " + str(record["_value"]))

print()
print()

"""
Query: using Stream
"""
records = query_api.query_stream('from(bucket:"my-bucket") |> range(start: -10m)')

for record in records:
    print(f'Temperature in {record["location"]} is {record["_value"]}')

"""
Interrupt a stream after retrieve a required data
"""
large_stream = query_api.query_stream('from(bucket:"my-bucket") |> range(start: -100d)')
for record in large_stream:
    if record["location"] == "New York":
        print(f'New York temperature: {record["_value"]}')
        break

large_stream.close()

print()
print()

"""
Query: using csv library
"""
csv_result = query_api.query_csv('from(bucket:"my-bucket") |> range(start: -10m)',
                                 dialect=Dialect(header=False, delimiter=",", comment_prefix="#", annotations=[],
                                                 date_time_format="RFC3339"))
for csv_line in csv_result:
    if not len(csv_line) == 0:
        print(f'Temperature in {csv_line[9]} is {csv_line[6]}')

"""
Close client
"""
client.close()

Pandas DataFrame

Note

For DataFrame querying you should install Pandas dependency via pip install 'influxdb-client[extra]'.

Note

Note that if a query returns more then one table then the client generates a DataFrame for each of them.

The client is able to retrieve data in Pandas DataFrame format thought query_data_frame:

from influxdb_client import InfluxDBClient, Point, Dialect
from influxdb_client.client.write_api import SYNCHRONOUS

client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org")

write_api = client.write_api(write_options=SYNCHRONOUS)
query_api = client.query_api()

"""
Prepare data
"""

_point1 = Point("my_measurement").tag("location", "Prague").field("temperature", 25.3)
_point2 = Point("my_measurement").tag("location", "New York").field("temperature", 24.3)

write_api.write(bucket="my-bucket", record=[_point1, _point2])

"""
Query: using Pandas DataFrame
"""
data_frame = query_api.query_data_frame('from(bucket:"my-bucket") '
                                        '|> range(start: -10m) '
                                        '|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") '
                                        '|> keep(columns: ["location", "temperature"])')
print(data_frame.to_string())

"""
Close client
"""
client.close()

Output:

    result table  location  temperature
0  _result     0  New York         24.3
1  _result     1    Prague         25.3

Examples

How to efficiently import large dataset

The following example shows how to import dataset with dozen megabytes. If you would like to import gigabytes of data then use our multiprocessing example: import_data_set_multiprocessing.py for use a full capability of your hardware.

"""
Import VIX - CBOE Volatility Index - from "vix-daily.csv" file into InfluxDB 2.0

https://datahub.io/core/finance-vix#data
"""

from collections import OrderedDict
from csv import DictReader

import reactivex as rx
from reactivex import operators as ops

from influxdb_client import InfluxDBClient, Point, WriteOptions

def parse_row(row: OrderedDict):
    """Parse row of CSV file into Point with structure:

        financial-analysis,type=ily close=18.47,high=19.82,low=18.28,open=19.82 1198195200000000000

    CSV format:
        Date,VIX Open,VIX High,VIX Low,VIX Close\n
        2004-01-02,17.96,18.68,17.54,18.22\n
        2004-01-05,18.45,18.49,17.44,17.49\n
        2004-01-06,17.66,17.67,16.19,16.73\n
        2004-01-07,16.72,16.75,15.5,15.5\n
        2004-01-08,15.42,15.68,15.32,15.61\n
        2004-01-09,16.15,16.88,15.57,16.75\n
        ...

    :param row: the row of CSV file
    :return: Parsed csv row to [Point]
    """

    """
     For better performance is sometimes useful directly create a LineProtocol to avoid unnecessary escaping overhead:
     """
     # from datetime import timezone
     # import ciso8601
     # from influxdb_client.client.write.point import EPOCH
     #
     # time = (ciso8601.parse_datetime(row["Date"]).replace(tzinfo=timezone.utc) - EPOCH).total_seconds() * 1e9
     # return f"financial-analysis,type=vix-daily" \
     #        f" close={float(row['VIX Close'])},high={float(row['VIX High'])},low={float(row['VIX Low'])},open={float(row['VIX Open'])} " \
     #        f" {int(time)}"

    return Point("financial-analysis") \
        .tag("type", "vix-daily") \
        .field("open", float(row['VIX Open'])) \
        .field("high", float(row['VIX High'])) \
        .field("low", float(row['VIX Low'])) \
        .field("close", float(row['VIX Close'])) \
        .time(row['Date'])


"""
Converts vix-daily.csv into sequence of datad point
"""
data = rx \
    .from_iterable(DictReader(open('vix-daily.csv', 'r'))) \
    .pipe(ops.map(lambda row: parse_row(row)))

client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org", debug=True)

"""
Create client that writes data in batches with 50_000 items.
"""
write_api = client.write_api(write_options=WriteOptions(batch_size=50_000, flush_interval=10_000))

"""
Write data into InfluxDB
"""
write_api.write(bucket="my-bucket", record=data)
write_api.close()

"""
Querying max value of CBOE Volatility Index
"""
query = 'from(bucket:"my-bucket")' \
        ' |> range(start: 0, stop: now())' \
        ' |> filter(fn: (r) => r._measurement == "financial-analysis")' \
        ' |> max()'
result = client.query_api().query(query=query)

"""
Processing results
"""
print()
print("=== results ===")
print()
for table in result:
    for record in table.records:
        print('max {0:5} = {1}'.format(record.get_field(), record.get_value()))

"""
Close client
"""
client.close()

Efficiency write data from IOT sensor

"""
Efficiency write data from IOT sensor - write changed temperature every minute
"""
import atexit
import platform
from datetime import timedelta

import psutil as psutil
import reactivex as rx
from reactivex import operators as ops

from influxdb_client import InfluxDBClient, WriteApi, WriteOptions

def on_exit(db_client: InfluxDBClient, write_api: WriteApi):
    """Close clients after terminate a script.

    :param db_client: InfluxDB client
    :param write_api: WriteApi
    :return: nothing
    """
    write_api.close()
    db_client.close()


def sensor_temperature():
    """Read a CPU temperature. The [psutil] doesn't support MacOS so we use [sysctl].

    :return: actual CPU temperature
    """
    os_name = platform.system()
    if os_name == 'Darwin':
        from subprocess import check_output
        output = check_output(["sysctl", "machdep.xcpm.cpu_thermal_level"])
        import re
        return re.findall(r'\d+', str(output))[0]
    else:
        return psutil.sensors_temperatures()["coretemp"][0]


def line_protocol(temperature):
    """Create a InfluxDB line protocol with structure:

        iot_sensor,hostname=mine_sensor_12,type=temperature value=68

    :param temperature: the sensor temperature
    :return: Line protocol to write into InfluxDB
    """

    import socket
    return 'iot_sensor,hostname={},type=temperature value={}'.format(socket.gethostname(), temperature)


"""
Read temperature every minute; distinct_until_changed - produce only if temperature change
"""
data = rx\
    .interval(period=timedelta(seconds=60))\
    .pipe(ops.map(lambda t: sensor_temperature()),
          ops.distinct_until_changed(),
          ops.map(lambda temperature: line_protocol(temperature)))

_db_client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org", debug=True)

"""
Create client that writes data into InfluxDB
"""
_write_api = _db_client.write_api(write_options=WriteOptions(batch_size=1))
_write_api.write(bucket="my-bucket", record=data)


"""
Call after terminate a script
"""
atexit.register(on_exit, _db_client, _write_api)

input()

Connect to InfluxDB Cloud

The following example demonstrate a simplest way how to write and query date with the InfluxDB Cloud.

At first point you should create an authentication token as is described here.

After that you should configure properties: influx_cloud_url, influx_cloud_token, bucket and org in a influx_cloud.py example.

The last step is run a python script via: python3 influx_cloud.py.

"""
Connect to InfluxDB 2.0 - write data and query them
"""

from datetime import datetime

from influxdb_client import Point, InfluxDBClient
from influxdb_client.client.write_api import SYNCHRONOUS

"""
Configure credentials
"""
influx_cloud_url = 'https://us-west-2-1.aws.cloud2.influxdata.com'
influx_cloud_token = '...'
bucket = '...'
org = '...'

client = InfluxDBClient(url=influx_cloud_url, token=influx_cloud_token)
try:
    kind = 'temperature'
    host = 'host1'
    device = 'opt-123'

    """
    Write data by Point structure
    """
    point = Point(kind).tag('host', host).tag('device', device).field('value', 25.3).time(time=datetime.utcnow())

    print(f'Writing to InfluxDB cloud: {point.to_line_protocol()} ...')

    write_api = client.write_api(write_options=SYNCHRONOUS)
    write_api.write(bucket=bucket, org=org, record=point)

    print()
    print('success')
    print()
    print()

    """
    Query written data
    """
    query = f'from(bucket: "{bucket}") |> range(start: -1d) |> filter(fn: (r) => r._measurement == "{kind}")'
    print(f'Querying from InfluxDB cloud: "{query}" ...')
    print()

    query_api = client.query_api()
    tables = query_api.query(query=query, org=org)

    for table in tables:
        for row in table.records:
            print(f'{row.values["_time"]}: host={row.values["host"]},device={row.values["device"]} '
                  f'{row.values["_value"]} °C')

    print()
    print('success')

except Exception as e:
    print(e)
finally:
    client.close()

How to use Jupyter + Pandas + InfluxDB 2

The first example shows how to use client capabilities to predict stock price via Keras, TensorFlow, sklearn:

The example is taken from Kaggle.

https://raw.githubusercontent.com/influxdata/influxdb-client-python/master/docs/images/stock-price-prediction.gif

Result:

https://raw.githubusercontent.com/influxdata/influxdb-client-python/master/docs/images/stock-price-prediction-results.png

The second example shows how to use client capabilities to realtime visualization via hvPlot, Streamz, RxPY:

https://raw.githubusercontent.com/influxdata/influxdb-client-python/master/docs/images/realtime-result.gif

Other examples

You can find all examples at GitHub: influxdb-client-python/examples.

Advanced Usage

Gzip support

InfluxDBClient does not enable gzip compression for http requests by default. If you want to enable gzip to reduce transfer data's size, you can call:

from influxdb_client import InfluxDBClient

_db_client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org", enable_gzip=True)

Authenticate to the InfluxDB

InfluxDBClient supports three options how to authorize a connection:

  • Token
  • Username & Password
  • HTTP Basic

Token

Use the token to authenticate to the InfluxDB API. In your API requests, an Authorization header will be send. The header value, provide the word Token followed by a space and an InfluxDB API token. The word token` is case-sensitive.

from influxdb_client import InfluxDBClient

with InfluxDBClient(url="http://localhost:8086", token="my-token") as client

Note

Note that this is a preferred way how to authenticate to InfluxDB API.

Username & Password

Authenticates via username and password credentials. If successful, creates a new session for the user.

from influxdb_client import InfluxDBClient

with InfluxDBClient(url="http://localhost:8086", username="my-user", password="my-password") as client

Warning

The username/password auth is based on the HTTP "Basic" authentication. The authorization expires when the time-to-live (TTL) (default 60 minutes) is reached and client produces unauthorized exception.

HTTP Basic

Use this to enable basic authentication when talking to a InfluxDB 1.8.x that does not use auth-enabled but is protected by a reverse proxy with basic authentication.

from influxdb_client import InfluxDBClient

with InfluxDBClient(url="http://localhost:8086", auth_basic=True, token="my-proxy-secret") as client

Warning

Don't use this when directly talking to InfluxDB 2.

Proxy configuration

You can configure the client to tunnel requests through an HTTP proxy. The following proxy options are supported:

  • proxy - Set this to configure the http proxy to be used, ex. http://localhost:3128
  • proxy_headers - A dictionary containing headers that will be sent to the proxy. Could be used for proxy authentication.
from influxdb_client import InfluxDBClient

with InfluxDBClient(url="http://localhost:8086",
                    token="my-token",
                    org="my-org",
                    proxy="http://localhost:3128") as client:

Note

If your proxy notify the client with permanent redirect (HTTP 301) to different host. The client removes Authorization header, because otherwise the contents of Authorization is sent to third parties which is a security vulnerability.

You can change this behaviour by:

from urllib3 import Retry
Retry.DEFAULT_REMOVE_HEADERS_ON_REDIRECT = frozenset()
Retry.DEFAULT.remove_headers_on_redirect = Retry.DEFAULT_REMOVE_HEADERS_ON_REDIRECT

Delete data

The delete_api.py supports deletes points from an InfluxDB bucket.

from influxdb_client import InfluxDBClient

client = InfluxDBClient(url="http://localhost:8086", token="my-token")

delete_api = client.delete_api()

"""
Delete Data
"""
start = "1970-01-01T00:00:00Z"
stop = "2021-02-01T00:00:00Z"
delete_api.delete(start, stop, '_measurement="my_measurement"', bucket='my-bucket', org='my-org')

"""
Close client
"""
client.close()

InfluxDB 1.8 API compatibility

InfluxDB 1.8.0 introduced forward compatibility APIs for InfluxDB 2.0. This allow you to easily move from InfluxDB 1.x to InfluxDB 2.0 Cloud or open source.

The following forward compatible APIs are available:

API Endpoint Description
query_api.py /api/v2/query Query data in InfluxDB 1.8.0+ using the InfluxDB 2.0 API and Flux (endpoint should be enabled by flux-enabled option)
write_api.py /api/v2/write Write data to InfluxDB 1.8.0+ using the InfluxDB 2.0 API
ping() /ping Check the status of your InfluxDB instance

For detail info see InfluxDB 1.8 example.

Handling Errors

Errors happen and it's important that your code is prepared for them. All client related exceptions are delivered from InfluxDBError. If the exception cannot be recovered in the client it is returned to the application. These exceptions are left for the developer to handle.

Almost all APIs directly return unrecoverable exceptions to be handled this way:

from influxdb_client import InfluxDBClient
from influxdb_client.client.exceptions import InfluxDBError
from influxdb_client.client.write_api import SYNCHRONOUS

with InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org") as client:
    try:
        client.write_api(write_options=SYNCHRONOUS).write("my-bucket", record="mem,tag=a value=86")
    except InfluxDBError as e:
        if e.response.status == 401:
            raise Exception(f"Insufficient write permissions to 'my-bucket'.") from e
        raise

The only exception is batching WriteAPI (for more info see Batching). where you need to register custom callbacks to handle batch events. This is because this API runs in the background in a separate thread and isn't possible to directly return underlying exceptions.

from influxdb_client import InfluxDBClient
from influxdb_client.client.exceptions import InfluxDBError


class BatchingCallback(object):

    def success(self, conf: (str, str, str), data: str):
        print(f"Written batch: {conf}, data: {data}")

    def error(self, conf: (str, str, str), data: str, exception: InfluxDBError):
        print(f"Cannot write batch: {conf}, data: {data} due: {exception}")

    def retry(self, conf: (str, str, str), data: str, exception: InfluxDBError):
        print(f"Retryable error occurs for batch: {conf}, data: {data} retry: {exception}")


with InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org") as client:
    callback = BatchingCallback()
    with client.write_api(success_callback=callback.success,
                          error_callback=callback.error,
                          retry_callback=callback.retry) as write_api:
        pass

HTTP Retry Strategy

By default the client uses a retry strategy only for batching writes (for more info see Batching). For other HTTP requests there is no one retry strategy, but it could be configured by retries parameter of InfluxDBClient.

For more info about how configure HTTP retry see details in urllib3 documentation.

from urllib3 import Retry

from influxdb_client import InfluxDBClient

retries = Retry(connect=5, read=2, redirect=5)
client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org", retries=retries)

Nanosecond precision

The Python's datetime doesn't support precision with nanoseconds so the library during writes and queries ignores everything after microseconds.

If you would like to use datetime with nanosecond precision you should use pandas.Timestamp that is replacement for python datetime.datetime object and also you should set a proper DateTimeHelper to the client.

from influxdb_client import Point, InfluxDBClient
from influxdb_client.client.util.date_utils_pandas import PandasDateTimeHelper
from influxdb_client.client.write_api import SYNCHRONOUS

"""
Set PandasDate helper which supports nanoseconds.
"""
import influxdb_client.client.util.date_utils as date_utils

date_utils.date_helper = PandasDateTimeHelper()

"""
Prepare client.
"""
client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org")

write_api = client.write_api(write_options=SYNCHRONOUS)
query_api = client.query_api()

"""
Prepare data
"""

point = Point("h2o_feet") \
    .field("water_level", 10) \
    .tag("location", "pacific") \
    .time('1996-02-25T21:20:00.001001231Z')

print(f'Time serialized with nanosecond precision: {point.to_line_protocol()}')
print()

write_api.write(bucket="my-bucket", record=point)

"""
Query: using Stream
"""
query = '''
from(bucket:"my-bucket")
        |> range(start: 0, stop: now())
        |> filter(fn: (r) => r._measurement == "h2o_feet")
'''
records = query_api.query_stream(query)

for record in records:
    print(f'Temperature in {record["location"]} is {record["_value"]} at time: {record["_time"]}')

"""
Close client
"""
client.close()

How to use Asyncio

Starting from version 1.27.0 for Python 3.7+ the influxdb-client package supports async/await based on asyncio, aiohttp and aiocsv. You can install aiohttp and aiocsv directly:

$ python -m pip install influxdb-client aiohttp aiocsv

or use the [async] extra:

$ python -m pip install influxdb-client[async]

Warning

The InfluxDBClientAsync should be initialised inside async coroutine otherwise there can be unexpected behaviour. For more info see: Why is creating a ClientSession outside of an event loop dangerous?.

Async APIs

All async APIs are available via :class:`~influxdb_client.client.influxdb_client_async.InfluxDBClientAsync`. The async version of the client supports following asynchronous APIs:

and also check to readiness of the InfluxDB via /ping endpoint:

import asyncio

from influxdb_client.client.influxdb_client_async import InfluxDBClientAsync


async def main():
    async with InfluxDBClientAsync(url="http://localhost:8086", token="my-token", org="my-org") as client:
        ready = await client.ping()
        print(f"InfluxDB: {ready}")


if __name__ == "__main__":
    asyncio.run(main())

Async Write API

The :class:`~influxdb_client.client.write_api_async.WriteApiAsync` supports ingesting data as:

import asyncio

from influxdb_client import Point
from influxdb_client.client.influxdb_client_async import InfluxDBClientAsync


async def main():
    async with InfluxDBClientAsync(url="http://localhost:8086", token="my-token", org="my-org") as client:

        write_api = client.write_api()

        _point1 = Point("async_m").tag("location", "Prague").field("temperature", 25.3)
        _point2 = Point("async_m").tag("location", "New York").field("temperature", 24.3)

        successfully = await write_api.write(bucket="my-bucket", record=[_point1, _point2])

        print(f" > successfully: {successfully}")


if __name__ == "__main__":
    asyncio.run(main())

Async Query API

The :class:`~influxdb_client.client.query_api_async.QueryApiAsync` supports retrieve data as:

import asyncio

from influxdb_client.client.influxdb_client_async import InfluxDBClientAsync


async def main():
    async with InfluxDBClientAsync(url="http://localhost:8086", token="my-token", org="my-org") as client:
        # Stream of FluxRecords
        query_api = client.query_api()
        records = await query_api.query_stream('from(bucket:"my-bucket") '
                                               '|> range(start: -10m) '
                                               '|> filter(fn: (r) => r["_measurement"] == "async_m")')
        async for record in records:
            print(record)


if __name__ == "__main__":
    asyncio.run(main())

Async Delete API

import asyncio
from datetime import datetime

from influxdb_client.client.influxdb_client_async import InfluxDBClientAsync


async def main():
    async with InfluxDBClientAsync(url="http://localhost:8086", token="my-token", org="my-org") as client:
        start = datetime.utcfromtimestamp(0)
        stop = datetime.now()
        # Delete data with location = 'Prague'
        successfully = await client.delete_api().delete(start=start, stop=stop, bucket="my-bucket",
                                                        predicate="location = \"Prague\"")
        print(f" > successfully: {successfully}")


if __name__ == "__main__":
    asyncio.run(main())

Management API

import asyncio

from influxdb_client import OrganizationsService
from influxdb_client.client.influxdb_client_async import InfluxDBClientAsync


async def main():
    async with InfluxDBClientAsync(url='http://localhost:8086', token='my-token', org='my-org') as client:
        # Initialize async OrganizationsService
        organizations_service = OrganizationsService(api_client=client.api_client)

        # Find organization with name 'my-org'
        organizations = await organizations_service.get_orgs(org='my-org')
        for organization in organizations.orgs:
            print(f'name: {organization.name}, id: {organization.id}')


if __name__ == "__main__":
    asyncio.run(main())

Proxy and redirects

You can configure the client to tunnel requests through an HTTP proxy. The following proxy options are supported:

  • proxy - Set this to configure the http proxy to be used, ex. http://localhost:3128
  • proxy_headers - A dictionary containing headers that will be sent to the proxy. Could be used for proxy authentication.
from influxdb_client.client.influxdb_client_async import InfluxDBClientAsync


async with InfluxDBClientAsync(url="http://localhost:8086",
                               token="my-token",
                               org="my-org",
                               proxy="http://localhost:3128") as client:

Note

If your proxy notify the client with permanent redirect (HTTP 301) to different host. The client removes Authorization header, because otherwise the contents of Authorization is sent to third parties which is a security vulnerability.

Client automatically follows HTTP redirects. The default redirect policy is to follow up to 10 consecutive requests. The redirects can be configured via:

  • allow_redirects - If set to False, do not follow HTTP redirects. True by default.
  • max_redirects - Maximum number of HTTP redirects to follow. 10 by default.

Logging

The client uses Python's logging facility for logging the library activity. The following logger categories are exposed:

  • influxdb_client.client.influxdb_client
  • influxdb_client.client.influxdb_client_async
  • influxdb_client.client.write_api
  • influxdb_client.client.write_api_async
  • influxdb_client.client.write.retry
  • influxdb_client.client.write.dataframe_serializer
  • influxdb_client.client.util.multiprocessing_helper
  • influxdb_client.client.http
  • influxdb_client.client.exceptions

The default logging level is warning without configured logger output. You can use the standard logger interface to change the log level and handler:

import logging
import sys

from influxdb_client import InfluxDBClient

with InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org") as client:
    for _, logger in client.conf.loggers.items():
        logger.setLevel(logging.DEBUG)
        logger.addHandler(logging.StreamHandler(sys.stdout))

Debugging

For debug purpose you can enable verbose logging of HTTP requests and set the debug level to all client's logger categories by:

client = InfluxDBClient(url="http://localhost:8086", token="my-token", debug=True)

Note

Both HTTP request headers and body will be logged to standard output.

Local tests

# start/restart InfluxDB2 on local machine using docker
./scripts/influxdb-restart.sh

# install requirements
pip install -e . --user
pip install -e .\[extra\] --user
pip install -e .\[test\] --user

# run unit & integration tests
pytest tests

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/influxdata/influxdb-client-python.

License

The gem is available as open source under the terms of the MIT License.

More Repositories

1

influxdb

Scalable datastore for metrics, events, and real-time analytics
Rust
28,401
star
2

telegraf

Agent for collecting, processing, aggregating, and writing metrics, logs, and other arbitrary data.
Go
14,568
star
3

kapacitor

Open source framework for processing, monitoring, and alerting on time series data
Go
2,310
star
4

influxdb-python

Python client for InfluxDB
Python
1,689
star
5

chronograf

Open source monitoring and visualization UI for the TICK stack
TypeScript
1,480
star
6

influxdb-java

Java client for InfluxDB
Java
1,178
star
7

influxdb-relay

Service to replicate InfluxDB data for high availability
Python
830
star
8

flux

Flux is a lightweight scripting language for querying databases (like InfluxDB) and working with data. It's part of InfluxDB 1.7 and 2.0, but can be run independently of those.
FLUX
767
star
9

influxdb-client-go

InfluxDB 2 Go Client
Go
599
star
10

go-syslog

Blazing fast syslog parser
Go
478
star
11

sandbox

A sandbox for the full TICK stack
Shell
475
star
12

influxdb-client-java

InfluxDB 2 JVM Based Clients
Java
433
star
13

influxdb-php

influxdb-php: A PHP Client for InfluxDB, a time series database
PHP
431
star
14

influxdb-client-csharp

InfluxDB 2.x C# Client
C#
357
star
15

community-templates

InfluxDB Community Templates: Quickly collect & analyze time series data from a range of sources: Kubernetes, MySQL, Postgres, AWS, Nginx, Jenkins, and more.
Python
350
star
16

influxdb-client-js

InfluxDB 2.0 JavaScript client
TypeScript
326
star
17

influxdata-docker

Official docker images for the influxdata stack
Shell
314
star
18

influxdb-comparisons

Code for comparison write ups of InfluxDB and other solutions
Go
306
star
19

rskafka

A minimal Rust client for Apache Kafka
Rust
292
star
20

docs.influxdata.com-ARCHIVE

ARCHIVE - 1.x docs for InfluxData
Less
252
star
21

helm-charts

Official Helm Chart Repository for InfluxData Applications
Mustache
226
star
22

influxdb-rails

Ruby on Rails bindings to automatically write metrics into InfluxDB
Ruby
212
star
23

influxdb-csharp

A .NET library for efficiently sending points to InfluxDB 1.x
C#
198
star
24

influxdb1-client

The old clientv2 for InfluxDB 1.x
Go
190
star
25

giraffe

A foundation for visualizations in the InfluxDB UI
TypeScript
183
star
26

influxql

Package influxql implements a parser for the InfluxDB query language.
Go
168
star
27

influxdb-client-php

InfluxDB (v2+) Client Library for PHP
PHP
149
star
28

tdigest

An implementation of Ted Dunning's t-digest in Go.
Go
133
star
29

influx-stress

New tool for generating artificial load on InfluxDB
Go
118
star
30

ui

UI for InfluxDB
TypeScript
93
star
31

tick-charts

A repository for Helm Charts for the full TICK Stack
Smarty
90
star
32

pbjson

Auto-generate serde implementations for prost types
Rust
89
star
33

telegraf-operator

telegraf-operator helps monitor application on Kubernetes with Telegraf
Go
80
star
34

inch

An InfluxDB benchmarking tool.
Go
78
star
35

influxdata-operator

A k8s operator for InfluxDB
Go
76
star
36

docs-v2

InfluxData Documentation that covers InfluxDB Cloud, InfluxDB OSS 2.x, InfluxDB OSS 1.x, InfluxDB Enterprise, Telegraf, Chronograf, Kapacitor, and Flux.
SCSS
72
star
37

wirey

Manage local wireguard interfaces in a distributed system
Go
66
star
38

influx-cli

CLI for managing resources in InfluxDB v2
Go
63
star
39

influxdb-go

61
star
40

terraform-aws-influx

Reusable infrastructure modules for running TICK stack on AWS
HCL
51
star
41

influxdb2-sample-data

Sample data for InfluxDB 2.0
JavaScript
46
star
42

influxdb-observability

Go
46
star
43

influxdb-client-ruby

InfluxDB 2.0 Ruby Client
Ruby
45
star
44

clockface

UI Kit for building Chronograf
TypeScript
44
star
45

grade

Track Go benchmark performance over time by storing results in InfluxDB
Go
43
star
46

influxdb-r

R library for InfluxDB
R
43
star
47

nginx-influxdb-module

C
39
star
48

nifi-influxdb-bundle

InfluxDB Processors For Apache NiFi
Java
36
star
49

line-protocol

Go
36
star
50

tensorflow-influxdb

Jupyter Notebook
34
star
51

iot-center-flutter

InlfuxDB 2.0 dart client flutter demo
Dart
34
star
52

whisper-migrator

A tool for migrating data from Graphite Whisper files to InfluxDB TSM files (version 0.10.0).
Go
33
star
53

flightsql-dbapi

DB API 2 interface for Flight SQL with SQLAlchemy extras.
Python
32
star
54

kube-influxdb

Configuration to monitor Kubernetes with the TICK stack
Shell
31
star
55

k8s-kapacitor-autoscale

Demonstration of using Kapacitor to autoscale a k8s deployment
Go
30
star
56

terraform-aws-influxdb

Deploys InfluxDB Enterprise to AWS
HCL
29
star
57

catslack

Shell -> Slack the easy way
Go
28
star
58

flux-lsp

Implementation of Language Server Protocol for the flux language
Rust
27
star
59

influxdb-operator

The Kubernetes operator for InfluxDB and the TICK stack.
Go
27
star
60

influxdb3_core

InfluxData's core functionality for InfluxDB Edge and IOx
Rust
26
star
61

influxdb-client-swift

InfluxDB (v2+) Client Library for Swift
Swift
26
star
62

influxdb-client-dart

InfluxDB (v2+) Client Library for Dart and Flutter
Dart
25
star
63

kapacitor-course

25
star
64

influxdb-c

C
25
star
65

vsflux

Flux language extension for VSCode
TypeScript
25
star
66

grafana-flightsql-datasource

Grafana plugin for Flight SQL APIs.
TypeScript
25
star
67

ansible-chrony

A role to manage chrony on Linux systems
Ruby
24
star
68

influxdb-scala

Scala client for InfluxDB
Scala
22
star
69

cron

A fast, zero-allocation cron parser in ragel and golang
Go
21
star
70

influxdb-plugin-fluent

A buffered output plugin for Fluentd and InfluxDB 2
Ruby
21
star
71

terraform-google-influx

Reusable infrastructure modules for running TICK stack on GCP
Shell
20
star
72

iot-api-python

Python
18
star
73

openapi

An OpenAPI specification for influx (cloud/oss) apis.
Shell
17
star
74

influxdb-university

InfluxDB University
Python
16
star
75

influxdb-client-r

InfluxDB (v2+) Client R Package
R
14
star
76

kafka-connect-influxdb

InfluxDB 2 Connector for Kafka
Scala
13
star
77

cd-gitops-reference-architecture

Details of the CD/GitOps architecture in use at InfluxData
Shell
13
star
78

iot-api-ui

Common React UI for iot-api-<js, python, etc.> example apps designed for InfluxDB client library tutorials.
TypeScript
13
star
79

oats

An OpenAPI to TypeScript generator.
TypeScript
12
star
80

awesome

SCSS
12
star
81

windows-packager

Create a windows installer
Shell
12
star
82

influxdb-gds-connector

Google Data Studio Connector for InfluxDB.
JavaScript
11
star
83

promql

Go
11
star
84

object_store_rs

Rust
10
star
85

yarpc

Yet Another RPC for Go
Go
10
star
86

ansible-influxdb-enterprise

Ansible role for deploying InfluxDB Enterprise.
10
star
87

influxdb-sample-data

Sample time series data used to test InfluxDB
9
star
88

ingen

ingen is a tool for directly generating TSM data
Go
9
star
89

parquet-bloom-filter-analysis

Generate Parquet Files
Rust
8
star
90

ansible-kapacitor

Official Kapacitor Ansible Role for Linux
Jinja
7
star
91

wlog

Simple log level based Go logger.
Go
7
star
92

iot-api-js

An example IoT app built with NextJS (NodeJS + React) and the InfluxDB API client library for Javascript.
JavaScript
7
star
93

influxdb-iox-client-go

InfluxDB/IOx Client for Go
Go
7
star
94

influxdb-templates

This repo is a collection of dashboard templates used in the InfluxDB UI.
JavaScript
7
star
95

k8s-jsonnet-libs

Jsonnet Libs repo - mostly generated with jsonnet-libs/k8s project
Jsonnet
7
star
96

google-deployment-manager-influxdb-enterprise

GCP Deployment Manager templates for InfluxDB Enterprise.
HTML
6
star
97

jaeger-influxdb

Go
6
star
98

influxdb-action

A GitHub action for setting up and configuring InfluxDB and the InfluxDB Cloud CLI
Shell
6
star
99

influxdb-fsharp

A F# client library for InfluxDB, a time series database http://influxdb.com
F#
6
star
100

qprof

A tool for profiling the performance of InfluxQL queries
Go
6
star