Introduction
XingTian (ε倩) is a componentized library for the development and verification of reinforcement learning algorithms. It supports multiple algorithms, including DQN, DDPG, PPO, and IMPALA etc, which could training agents in multiple environments, such as Gym, Atari, Torcs, StarCraftII and so on. To meet users' requirements for quick verification and solving RL problems, four modules are abstracted: Algorithm
, Model
, Agent
, and Environment
. They work in a similar way as the combination of `Lego' building blocks. For details about the architecture, please see the Architecture introduction.
Dependencies
# ubuntu 18.04
sudo apt-get install python3-pip libopencv-dev -y
pip3 install opencv-python
# run with tensorflow 1.15.0 or tensorflow 2.3.1
pip3 install zmq h5py gym[atari] tqdm imageio matplotlib==3.0.3 Ipython pyyaml tensorflow==1.15.0 pyarrow lz4 fabric2 absl-py psutil tensorboardX setproctitle
or, using pip3 install -r requirements.txt
If your want to used PyTorch as the backend, please install it by yourself. Ref Pytorch
Installation
# cd PATH/TO/XingTian
pip3 install -e .
After installation, you could use import xt; print(xt.__Version__)
to check whether the installation is successful.
In [1]: import xt
In [2]: xt.__version__
Out[2]: '0.3.0'
Quick Start
Setup configuration
Follow's configuration shows a minimal example with Cartpole environment. More detailed description with the parameters of agent, algorithm and environment could been find in the User guide .
alg_para:
alg_name: PPO
alg_config:
process_num: 1
save_model: True # default False
save_interval: 100
env_para:
env_name: GymEnv
env_info:
name: CartPole-v0
vision: False
agent_para:
agent_name: PPO
agent_num : 1
agent_config:
max_steps: 200
complete_step: 1000000
complete_episode: 3550
model_para:
actor:
model_name: PpoMlp
state_dim: [4]
action_dim: 2
input_dtype: float32
model_config:
BATCH_SIZE: 200
CRITIC_LOSS_COEF: 1.0
ENTROPY_LOSS: 0.01
LR: 0.0003
LOSS_CLIPPING: 0.2
MAX_GRAD_NORM: 5.0
NUM_SGD_ITER: 8
SUMMARY: False
VF_SHARE_LAYERS: False
activation: tanh
hidden_sizes: [64, 64]
env_num: 10
In addition, your could find more configuration sets in examples directory.
Start training task
python3 xt/main.py -f examples/cartpole_ppo.yaml -t train
Evaluate local trained model
Set benchmark.eval.model_path
for evaluation within the YOUR_CONFIG_FILE.yaml
benchmark:
eval:
model_path: /YOUR/PATH/TO/EVAL/models
gap: 10 # index gap of eval model
evaluator_num: 1 # the number of evaluator instance
# run command
python3 xt/main.py -f examples/cartpole_ppo.yaml -t evaluate
NOTE: XingTian start with
-t train
as default.
Run with CLI
# Could replace `python3 xt/main.py` with `xt_main` command!
xt_main -f examples/cartpole_ppo.yaml -t train
# train with evaluate
xt_main -f examples/cartpole_ppo.yaml -t train_with_evaluate
Develop with Custom case
- Write custom module, and register it. More detail guidance on custom module can be found in the Developer Guide
- Add YOUR-CUSTOM-MODULE name into
your_train_configure.yaml
- Start training with
xt_main -f path/to/your_train_configure.yaml
:)
Reference Results
Episode Reward Average
-
DQN Reward after 10M time-steps (40M frames).
env XingTian Basic DQN RLlib Basic DQN Hessel et al. DQN BeamRider 6706 2869 ~2000 Breakout 352 287 ~150 QBert 14087 3921 ~4000 SpaceInvaders 947 650 ~500 -
PPO Reward after 10M time-steps (40M frames).
env XingTian PPO RLlib PPO Baselines PPO BeamRider 4877 2807 ~1800 Breakout 341 104 ~250 QBert 14771 11085 ~14000 SpaceInvaders 1025 671 ~800 -
IMPALA Reward after 10M time-steps (40M frames).
env XingTian IMPALA RLlib IMPALA BeamRider 2313 2071 Breakout 334 385 QBert 12205 4068 SpaceInvaders 742 719
Throughput
-
DQN
env XingTian Basic DQN RLlib Basic DQN BeamRider 129 109 Breakout 117 113 QBert 111 90 SpaceInvaders 115 100 -
PPO
env XingTian PPO RLlib PPO BeamRider 2422 1618 Breakout 2497 1535 QBert 2436 1617 SpaceInvaders 2438 1608 -
IMPALA
env XingTian IMPALA RLlib IMPALA BeamRider 8756 3637 Breakout 8814 3525 QBert 8249 3471 SpaceInvaders 8463 3555
Experiment conditionοΌ 72 Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz with single Tesla V100
Ray's reward data come from https://github.com/ray-project/rl-experiments, and Throughout from ray 0.8.6 with the same machine condition.
Acknowledgement
XingTian refers to the following projects: DeepMind/scalable_agent, baselines, ray.
License
The MIT License(MIT)