• Stars
    star
    390
  • Rank 110,242 (Top 3 %)
  • Language
    Python
  • License
    Apache License 2.0
  • Created over 2 years ago
  • Updated 4 months ago

Reviews

There are no reviews yet. Be the first to send feedback to the community and the maintainers!

Repository Details

WarcDB: Web crawl data as SQLite databases.

WarcDB: Web crawl data as SQLite databases.

WarcDB is a an SQLite-based file format that makes web crawl data easier to share and query.

It is based on the standardized Web ARChive format, used by web archivers.

Usage

pip install warcdb
# Load the `archive.warcdb` file with data.
warcdb import archive.warcdb ./tests/google.warc ./tests/frontpages.warc.gz "https://tselai.com/data/google.warc"

warcdb enable-fts ./archive.warcdb response payload

# Saarch for records that mention "stocks" in their response body
warcdb search ./archive.warcdb response "stocks" -c "WARC-Record-ID"

As you can see you can use any mix of local/remote and raw/compressed archives.

For example to get a part of the Common Crawl January 2022 Crawl Archive in a streaming fashion:

warcdb import archive.warcdb "https://data.commoncrawl.org/crawl-data/CC-MAIN-2022-05/segments/1642320306346.64/warc/CC-MAIN-20220128212503-20220129002503-00719.warc.gz

How It Works

Individual .warc files are read and parsed and their data is inserted into an SQLite database with the relational schema seen below.

Schema

Here's the relational schema of the .warcdb file.

WarcDB Schema

Motivation

From the WARC formal specification:

The WARC (Web ARChive) file format offers a convention for concatenating multiple resource records (data objects), each consisting of a set of simple text headers and an arbitrary data block into one long file.

Many organizations such as Commoncrawl, WebRecorder, Archive.org and libraries around the world, use the warc format to archive and store web data.

The full datasets of these services range in the few pebibytes(PiB), making them impractical to query using non-distributed systems.

This project aims to make subsets such data easier to access and query using SQL.

Currently, this is implemented on top of SQLite and is a wrapper around the excellent SQLite-Utils utility.

"wrapper" means that all existing sqlite-utils CLI commands can be called as expected like

sqlite-utils <command> archive.warcdb`

or

warcdb <command> example.warcdb

Examples

Populate with wget

wget --warc-file tselai "https://tselai.com"

warcdb import archive.warcdb tselai.warc.gz

Get all response headers

sqlite3 archive.warcdb <<SQL
select  json_extract(h.value, '$.header') as header, 
        json_extract(h.value, '$.value') as value
from response,
     json_each(http_headers) h
SQL

Get Cookie Headers for requests and responses

sqlite3 archive.warcdb <<SQL
select json_extract(h.value, '$.header') as header, json_extract(h.value, '$.value') as value
from response,
     json_each(http_headers) h
where json_extract(h.value, '$.header') like '%Cookie%'
union
select json_extract(h.value, '$.header') as header, json_extract(h.value, '$.value') as value
from request,
     json_each(http_headers) h
where json_extract(h.value, '$.header') like '%Cookie%'
SQL

Resources on WARC